Airy Kernel with Two Sets of Parameters in Directed Percolation and Random Matrix Theory

We introduce a generalization of the extended Airy kernel with two sets of real parameters. We show that this kernel arises in the edge scaling limit of correlation kernels of determinantal processes related to a directed percolation model and to an ensemble of random matrices.

[1]  Differential Equations for Dyson Processes , 2003, math/0309082.

[2]  T. Sasamoto,et al.  Dynamics of a Tagged Particle in the Asymmetric Exclusion Process with the Step Initial Condition , 2007 .

[3]  P. Glynn,et al.  Departures from Many Queues in Series , 1991 .

[4]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[5]  P. Forrester,et al.  Asymptotic correlations for Gaussian and Wishart matrices with external source , 2006, math-ph/0604012.

[6]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[7]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[8]  Kurt Johansson,et al.  Random Growth and Random Matrices , 2001 .

[9]  Eric M. Rains,et al.  Interpretations of some parameter dependent generalizations of classical matrix ensembles , 2002, math-ph/0211042.

[10]  P. Forrester,et al.  Multilevel dynamical correlation functions for Dyson's Brownian motion model of random matrices , 1998 .

[11]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[12]  A. Okounkov Infinite wedge and random partitions , 1999, math/9907127.

[13]  Kurt Johansson Discrete Polynuclear Growth and Determinantal Processes , 2003 .

[14]  Universal Parametric Correlations at the Soft Edge of the Spectrum of Random Matrix Ensembles , 1994, cond-mat/9404038.

[15]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[16]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[17]  K. Johansson Random matrices and determinantal processes , 2005, math-ph/0510038.

[18]  A. Okounkov,et al.  Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram , 2001, math/0107056.

[19]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[20]  Albert Edrei,et al.  On the generation function of a doubly infinite, totally positive sequence , 1953 .

[21]  Grigori Olshanski,et al.  Asymptotics of Jack polynomials as the number of variables goes to infinity , 1997 .

[22]  E. Rains,et al.  Eynard–Mehta Theorem, Schur Process, and their Pfaffian Analogs , 2004, math-ph/0409059.

[23]  Alexei Borodin,et al.  Periodic Schur process and cylindric partitions , 2006 .

[24]  Stochastic dynamics related to Plancherel measure on partitions , 2004, math-ph/0402064.