The number of realizations of a Laman graph
暂无分享,去创建一个
[1] G. Mikhalkin. Enumerative tropical algebraic geometry , 2003 .
[2] W. F. Meyer,et al. Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 2022 .
[3] Josef Schicho,et al. The number of realizations of a Laman graph , 2017, Electron. Notes Discret. Math..
[4] Sergey Bereg,et al. Certifying and constructing minimally rigid graphs in the plane , 2005, SCG.
[5] J. Faugère,et al. Combinatorial classes of parallel manipulators , 1995 .
[6] Leo Liberti,et al. On the number of realizations of certain Henneberg graphs arising in protein conformation , 2014, Discret. Appl. Math..
[7] A. Recski. A Network Theory Approach to the Rigidity of Skeletal Structures.Part III. An Electric Model of Planar Frameworks , 1984 .
[8] G. Mikhalkin. Enumerative tropical algebraic geometry in R^2 , 2003, math/0312530.
[9] Sam Payne,et al. Fibers of tropicalization , 2007, 0705.1732.
[10] Dinesh Manocha,et al. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[11] Eric Katz. A Tropical Toolkit , 2006 .
[12] B. Hendrickson,et al. Regular ArticleAn Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game , 1997 .
[13] M. Thorpe,et al. Rigidity theory and applications , 2002 .
[14] Steven J. Gortler,et al. Characterizing generic global rigidity , 2007, Ad Hoc Networks.
[15] Orit E. Raz,et al. Configurations of Lines in Space and Combinatorial Rigidity , 2016, Discret. Comput. Geom..
[16] N. Sloane. The on-line encyclopedia of integer sequences , 2018, Notices of the American Mathematical Society.
[17] H. Pollaczek-Geiringer. Über die Gliederung ebener Fachwerke , 1927 .
[18] G. Laman. On graphs and rigidity of plane skeletal structures , 1970 .
[19] Bill Jackson,et al. The number of equivalent realisations of a rigid graph , 2012, 1204.1228.
[20] Ioannis Z. Emiris,et al. Mixed Volume and Distance Geometry Techniques for Counting Euclidean Embeddings of Rigid Graphs , 2013, Distance Geometry.
[21] Helen Murray Roberts,et al. Elements of mathematics , 1956 .
[22] B. Hendrickson,et al. An Algorithm for Two-Dimensional Rigidity Percolation , 1997 .
[23] J. M. Selig. Geometric Fundamentals of Robotics , 2004, Monographs in Computer Science.
[24] D. Jacobs,et al. Protein flexibility predictions using graph theory , 2001, Proteins.
[25] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[26] Bernard Mourrain,et al. Computer Algebra Methods for Studying and Computing Molecular Conformations , 1999, Algorithmica.
[27] Thorsten Theobald,et al. Mixed volume techniques for embeddings of Laman graphs , 2008, Comput. Geom..
[28] P. Dietmaier,et al. The Stewart-Gough Platform of General Geometry can have 40 Real Postures , 1998 .
[29] András Recski,et al. A network theory approach to the rigidity of skeletal structures part II. Laman's theorem and topological formulae , 1984, Discret. Appl. Math..
[30] Ileana Streinu,et al. Frameworks with crystallographic symmetry , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[31] Tsuyoshi Murata,et al. {m , 1934, ACML.
[32] Jean-Charles Faugère,et al. FGb: A Library for Computing Gröbner Bases , 2010, ICMS.
[33] L. Lovász,et al. On Generic Rigidity in the Plane , 1982 .
[34] Ileana Streinu,et al. The Number of Embeddings of Minimally Rigid Graphs , 2002, SCG '02.