Organizational Structure of the Transcriptional Regulatory Network of Yeast: Periodic Genes

In this paper we investigate the organizational structure of the transcriptional regulatory network of S. cerevisiae with respect to the connectivity structure of periodic genes. We demonstrate that the giant strongly connected component plays a prominent role serving as central connector for genes experimentally found to be periodically expressed during the cell cycle of yeast. Numerically, we find by randomization of the gene labels that this organizational structure is unlikely to be formed by chance.

[1]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[2]  P.D. Cristea,et al.  Genomic signal processing , 2004, 7th Seminar on Neural Network Applications in Electrical Engineering, 2004. NEUREL 2004. 2004.

[3]  Sebastian E. Ahnert,et al.  Unbiased pattern detection in microarray data series , 2006, Bioinform..

[4]  Edda Klipp,et al.  Systems Biology , 1994 .

[5]  Matthias Dehmer,et al.  Information processing in the transcriptional regulatory network of yeast: Functional robustness , 2009, BMC Systems Biology.

[6]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[7]  Dongxiao Zhu,et al.  BMC Bioinformatics BioMed Central , 2005 .

[8]  M. Dehmer,et al.  Analysis of Microarray Data: A Network-Based Approach , 2008 .

[9]  Hongzhe Li,et al.  Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data , 2004, Bioinform..

[10]  M. Dehmer,et al.  Comprar Analysis of Microarray Data: A Network-Based Approach | Matthias Dehmer | 9783527318223 | Wiley , 2008 .

[11]  Sergey N. Dorogovtsev,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW (Physics) , 2003 .

[12]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[13]  Albert-László Barabási,et al.  Evolution of Networks: From Biological Nets to the Internet and WWW , 2004 .

[14]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[15]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[16]  Masanori Arita The metabolic world of Escherichia coli is not small. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[18]  Dietmar Schomburg,et al.  Observing local and global properties of metabolic pathways: "load points" and "choke points" in the metabolic networks , 2006, Bioinform..

[19]  Korbinian Strimmer,et al.  Identifying periodically expressed transcripts in microarray time series data , 2008, Bioinform..

[20]  Edward R. Dougherty,et al.  Genomic Signal Processing (Princeton Series in Applied Mathematics) , 2007 .

[21]  Bernhard Ø. Palsson Systems Biology: Epilogue , 2006 .

[22]  Stefan Bornholdt,et al.  Handbook of Graphs and Networks: From the Genome to the Internet , 2003 .

[23]  L. P. Zhao,et al.  Statistical modeling of large microarray data sets to identify stimulus-response profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Frank Emmert-Streib,et al.  A topological algorithm for identification of structural domains of proteins , 2007, BMC Bioinformatics.

[25]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[26]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[27]  D. Watts,et al.  Small Worlds: The Dynamics of Networks between Order and Randomness , 2001 .