An Efficient Design of Security Accelerator for IEEE 802.15.4 Wireless Senor Networks

In this paper, we provide a low cost AES core for ZigBee devices which accelerates the computation of AES algorithms. Also, by embedding the AES core, we present an efficient architecture of security accelerator satisfying the IEEE 802.15.4 specifications. In our experiments, we observed that the AES core and the security accelerator use fewer logic gates and consume lower power than other architectures based on blockwide and folded ones.

[1]  Francisco Rodŕıguez-Henŕıquez,et al.  An Efficient FPGA implementation of CCM mode using AES , 2005 .

[2]  Sehyun Park,et al.  Design and Implementation of IEEE 802.11i Architecture for Next Generation WLAN , 2005, CISC.

[3]  Arshad Aziz,et al.  HARDWARE IMPLEMENTATION OF AES-CCM FOR ROBUST SECURE WIRELESS NETWORK , 2005 .

[4]  Christof Paar,et al.  An FPGA implementation and performance evaluation of the Serpent block cipher , 2000, FPGA '00.

[5]  Christof Paar,et al.  An FPGA Implementation and Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists , 2000, AES Candidate Conference.

[6]  Máire O'Neill,et al.  High Performance Single-Chip FPGA Rijndael Algorithm Implementations , 2001, CHES.

[7]  Yang Xiao,et al.  MAC Security and Security Overhead Analysis in the IEEE 802.15.4 Wireless Sensor Networks , 2006, EURASIP J. Wirel. Commun. Netw..

[8]  Máire O'Neill,et al.  Single-Chip FPGA Implementation of the Advanced Encryption Standard Algorithm , 2001, FPL.

[9]  John V. McCanny,et al.  Rijndael FPGA implementation utilizing look-up tables , 2001, 2001 IEEE Workshop on Signal Processing Systems. SiPS 2001. Design and Implementation (Cat. No.01TH8578).

[10]  Wolfgang Fichtner,et al.  2Gbit/s Hardware Realizations of RIJNDAEL and SERPENT: A Comparative Analysis , 2002, CHES.

[11]  Jean-Didier Legat,et al.  A methodology to implement block ciphers in reconfigurable hardware and its application to fast and compact AES RIJNDAEL , 2003, FPGA '03.

[12]  Kris Gaj,et al.  Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware , 2000, AES Candidate Conference.

[13]  Milos Drutarovský,et al.  Two Methods of Rijndael Implementation in Reconfigurable Hardware , 2001, CHES.

[14]  Song J. Park Analysis of AES Hardware Implementations , 2003 .

[15]  Sehyun Park,et al.  Design and Implementation of Efficient Cipher Engine for IEEE 802.11i Compatible with IEEE 802.11n and IEEE 802.11e , 2005, CIS.

[16]  M. Hannikainen,et al.  Efficient hardware implementation of security processing for IEEE 802.15.4 wireless networks , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[17]  Sehyun Park,et al.  An Efficient Design of CCMP for Robust Security Network , 2005, ICISC.

[18]  Patrick Schaumont,et al.  Design and performance testing of a 2.29-GB/s Rijndael processor , 2003, IEEE J. Solid State Circuits.

[19]  Mitsuru Matsui,et al.  Hardware Evaluation of the AES Finalists , 2000, AES Candidate Conference.

[20]  Akashi Satoh,et al.  A Compact Rijndael Hardware Architecture with S-Box Optimization , 2001, ASIACRYPT.

[21]  José D. P. Rolim,et al.  A Comparative Study of Performance of AES Final Candidates Using FPGAs , 2000, CHES.

[22]  Arshad Aziz,et al.  An Efficient Software Implementation of AES-CCM for IEEE 802.11i Wireless St , 2007, 31st Annual International Computer Software and Applications Conference (COMPSAC 2007).

[23]  Kris Gaj,et al.  Fast implementations of secret-key block ciphers using mixed inner- and outer-round pipelining , 2001, FPGA '01.

[24]  Kris Gaj,et al.  Hardware performance of the AES finalists-survey and analysis of results , 2000 .

[25]  Francisco Rodŕıguez-Henŕıquez,et al.  An FPGA Implementation of CCM Mode Using AES , 2005, ICISC.

[26]  Akashi Satoh,et al.  An Optimized S-Box Circuit Architecture for Low Power AES Design , 2002, CHES.

[27]  Cheng-Wen Wu,et al.  A high-throughput low-cost AES cipher chip , 2002, Proceedings. IEEE Asia-Pacific Conference on ASIC,.