Biot theory: a review of its application to ultrasound propagation through cancellous bone.

[1]  M. Biot THEORY OF DEFORMATION OF A POROUS VISCOELASTIC ANISOTROPIC SOLID , 1956 .

[2]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[3]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[4]  Adrian E. Scheidegger,et al.  The physics of flow through porous media , 1957 .

[5]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[6]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[7]  Maurice A. Biot,et al.  Generalized Theory of Acoustic Propagation in Porous Dissipative Media , 1962 .

[8]  J. Mcelhaney,et al.  Dynamic response of bone and muscle tissue. , 1966, Journal of applied physiology.

[9]  S. Lang,et al.  Elastic Coefficients of Animal Bone , 1969, Science.

[10]  Robert D. Stoll,et al.  Acoustic Waves in Saturated Sediments , 1974 .

[11]  Robert J. S. Brown,et al.  Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media , 1980 .

[12]  Experimental Study of the Two Bulk Compressional Modes in Water-Saturated Porous Structures , 1980 .

[13]  J. Lewis,et al.  Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. , 1982, Journal of biomechanical engineering.

[14]  R. Lakes,et al.  Slow compressional wave propagation in wet human and bovine cortical bone. , 1983, Science.

[15]  O. Zienkiewicz,et al.  Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution , 1984 .

[16]  Bruce Ronald McAvoy,et al.  Ultrasonics Symposium Proceedings , 1984 .

[17]  J. Koplik,et al.  Conductivity and permeability from microgeometry , 1984 .

[18]  John D. Currey,et al.  The Mechanical Adaptations of Bones , 1984 .

[19]  L. Gibson The mechanical behaviour of cancellous bone. , 1985, Journal of biomechanics.

[20]  Schwartz,et al.  New pore-size parameter characterizing transport in porous media. , 1986, Physical review letters.

[21]  Characteristic pore sizes and transport in porous media. , 1987, Physical review. B, Condensed matter.

[22]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[23]  A. Meunier,et al.  The elastic anisotropy of bone. , 1987, Journal of biomechanics.

[24]  R. B. Ashman,et al.  Elastic properties of cancellous bone: measurement by an ultrasonic technique. , 1987, Journal of biomechanics.

[25]  M. L. McKelvie Ultrasonic propagation in cancellous bone. , 1988 .

[26]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[27]  R. B. Ashman,et al.  Elastic modulus of trabecular bone material. , 1988, Journal of biomechanics.

[28]  Walter Lauriks,et al.  Biot theory and stress–strain equations in porous sound‐absorbing materials , 1988 .

[29]  Laszlo Adler,et al.  Reflection and transmission of elastic waves from a fluid‐saturated porous solid boundary , 1990 .

[30]  G. E. Sleefe,et al.  Ultrasonic tissue characterization , 1990 .

[31]  M. L. Gogna,et al.  Wave propagation in anisotropic liquid‐saturated porous solids , 1991 .

[32]  S. Palmer,et al.  The interaction of ultrasound with cancellous bone. , 1991, Physics in medicine and biology.

[33]  G. A. Gist Fluid effects on velocity and attenuation in sandstones , 1991 .

[34]  J. Williams Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot's theory. , 1992, The Journal of the Acoustical Society of America.

[35]  P. Prasad,et al.  Three‐dimensional simulation of flow through a porous medium , 1992 .

[36]  D. Wilson,et al.  Relaxation‐matched modeling of propagation through porous media, including fractal pore structure , 1993 .

[37]  P. Herzog,et al.  Recent topics concerning the acoustics of fibrous and porous materials , 1993 .

[38]  Morgan,et al.  Drag forces of porous-medium acoustics. , 1993, Physical review. B, Condensed matter.

[39]  R. Rajapakse,et al.  Dynamic Green’s Functions of Homogeneous Poroelastic Half-Plane , 1994 .

[40]  C M Langton,et al.  The role of ultrasound in the assessment of osteoporosis. , 1994, Clinical rheumatology.

[41]  C. Njeh The dependence of ultrasound velocity and attenuation on the material properties of cancellous bone. , 1995 .

[42]  C F Njeh,et al.  The non-linear relationship between BUA and porosity in cancellous bone. , 1996, Physics in medicine and biology.

[43]  Poroelastic Response Resulting from Magma Intrusion , 1996 .

[44]  K. Foster,et al.  Prediction of frequency and pore size dependent attenuation of ultrasound in trabecular bone using Biot’s theory , 1996 .

[45]  A. Selvadurai,et al.  Mechanics of Poroelastic Media , 1996 .

[46]  C. Glüer,et al.  Quantitative Ultrasound Techniques for the Assessment of Osteoporosis: Expert Agreement on Current Status , 1997, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[47]  C F Njeh,et al.  The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. , 1997, Bone.

[48]  G. Lowet,et al.  Bone research in biomechanics , 1997 .

[49]  H. Takahashi,et al.  A Morphometric Comparison of Trabecular Structure of Human Ilium Between Microcomputed Tomography and Conventional Histomorphometry , 1997, Calcified Tissue International.

[50]  Ultrasonic wave propagation in porous media , 1997 .

[51]  R. Hodgskinson,et al.  The in vitro measurement of ultrasound in cancellous bone. , 1997, Studies in health technology and informatics.

[52]  A. Hosokawa,et al.  Ultrasonic wave propagation in bovine cancellous bone. , 1997, The Journal of the Acoustical Society of America.

[53]  Fractal dimension predicts broadband ultrasound attenuation in stereolithography models of cancellous bone. , 1998, Physics in medicine and biology.

[54]  P. S. Ganney,et al.  A comparison of porosity, fabric and fractal dimension as predictors of the Young's modulus of equine cancellous bone. , 1998, Medical engineering & physics.