Multifractality of jump diffusion processes

We study the local regularity and multifractal nature of the sample paths of jump diffusion processes, which are solutions to a class of stochastic differential equations with jumps. This article extends the recent work of Barral {\it et al.} who constructed a pure jump monotone Markov process with random multifractal spectrum. The class of processes studied here is much larger and exhibits novel features on the extreme values of the spectrum. This class includes Bass' stable-like processes and non-degenerate stable-driven SDEs.

[1]  Leonid Mytnik,et al.  Strong solutions for stochastic differential equations with jumps , 2009, 0910.0950.

[2]  On the oscillation of the Brownian motion process , 1963 .

[3]  Paul Balancca,et al.  Some sample path properties of multifractional Brownian motion , 2014, 1408.0317.

[4]  S. Krantz Fractal geometry , 1989 .

[5]  Jian Wang,et al.  Lévy Matters III , 2013 .

[6]  Kaushik I. Amin Jump Diffusion Option Valuation in Discrete Time , 1993 .

[7]  J. Bertoin On nowhere differentiability for Lévy processes , 1994 .

[8]  Federico Polito,et al.  Fractional diffusions with time-varying coefficients , 2015, 1501.04806.

[9]  Zongfei Fu,et al.  Stochastic equations of non-negative processes with jumps , 2008, 0802.0933.

[10]  Murad S. Taqqu,et al.  MULTIFRACTIONAL PROCESSES WITH RANDOM EXPONENT , 2005 .

[11]  S. Jaffard,et al.  Irregularities and Scaling in Signal and Image Processing: Multifractal Analysis , 2012, 1210.0482.

[12]  V. Wachtel,et al.  Multifractal analysis of superprocesses with stable branching in dimension one , 2012, 1212.0340.

[13]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[14]  Arnaud Durand,et al.  LOCAL MULTIFRACTAL ANALYSIS , 2012, 1209.3905.

[15]  R. Situ Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering , 2005 .

[16]  Xiaochuan Yang Hausdorff Dimension of the Range and the Graph of Stable-Like Processes , 2015, 1509.08759.

[17]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[18]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[19]  A. Negoro Stable-like processes: construction of the transition density and the behavior of sample paths near t=0 , 1994 .

[20]  Erhan Çinlar,et al.  Representation of Semimartingale Markov Processes in Terms of Wiener Processes and Poisson Random Measures , 1981 .

[21]  K. Falconer The Local Structure of Random Processes , 2003 .

[22]  S. Jaffard On lacunary wavelet series , 2000 .

[23]  Edwin A. Perkins,et al.  On the Hausdorff dimension of the Brownian slow points , 1983 .

[24]  The multifractal structure of super-brownian motion , 1998 .

[25]  S. Seuret,et al.  The singularity spectrum of Lévy processes in multifractal time , 2007 .

[26]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[27]  Arnaud Durand Singularity sets of Lévy processes , 2007, 0709.3596.

[28]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[29]  S. Orey,et al.  How Often on a Brownian Path Does the Law of Iterated Logarithm Fail , 1974 .

[30]  R. J. Elliott,et al.  Neutron Scattering from a Liquid on a Jump Diffusion Model , 1961 .

[31]  Arnaud Durand,et al.  Multifractal analysis of Lévy fields , 2012 .

[32]  L. A. Shepp,et al.  Covering the line with random intervals , 1972 .

[33]  D. Khoshnevisan,et al.  Fast sets and points for fractional Brownian motion , 2000 .

[34]  S. Seuret,et al.  A localized Jarnik-Besicovitch Theorem , 2009, 0903.2215.

[35]  Richard F. Bass,et al.  Stochastic differential equations driven by symmetric stable processes , 2003 .

[36]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[37]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[38]  Thomas G. Kurtz,et al.  Equivalence of Stochastic Equations and Martingale Problems , 2011 .

[39]  P. Balanca Fine regularity of Lévy processes and linear (multi)fractional stable motion , 2013 .

[40]  Stéphane Jaffard,et al.  Old friends revisited: the multifractal nature of some classical functions , 1997 .

[41]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[42]  S. Jaffard,et al.  A pure jump Markov process with a random singularity spectrum , 2009, 0907.0104.

[43]  G. Pap,et al.  Yamada-Watanabe Results for Stochastic Differential Equations with Jumps , 2013, 1312.4485.

[44]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[45]  Richard F. Bass,et al.  Uniqueness in law for pure jump Markov processes , 1988 .

[46]  N. Fournier On pathwise uniqueness for stochastic differential equations driven by stable L\'evy processes , 2010, 1011.0532.

[47]  L. Mytnik,et al.  Singularities of stable super-Brownian motion , 2016, 1608.00792.

[48]  M. Barczy,et al.  A Jump type SDE approach to positive self-Similar Markov processes , 2011, 1111.3235.

[49]  Arnaud Durand Random Wavelet Series Based on a Tree-Indexed Markov Chain , 2007, 0709.3597.

[50]  S. Jaffard The multifractal nature of Lévy processes , 1999 .