Calculating scale elasticity in DEA models

In the data envelopment analysis (DEA) efficiency literature, qualitative characterizations of returns to scale (increasing, constant, or decreasing) are most common. In economics it is standard to use the scale elasticity as a quantification of scale properties for a production function representing efficient operations. Our contributions are to review DEA practices, apply the concept of scale elasticity from economic multi-output production theory to DEA piecewise linear frontier production functions, and develop formulas for scale elasticity for radial projections of inefficient observations in the relative interior of fully dimensional facets. The formulas are applied to both constructed and real data and show the differences between scale elasticities for the two valid projections (input and output orientations). Instead of getting qualitative measures of returns to scale only as was done earlier in the DEA literature, we now get a quantitative range of scale elasticity values providing more information to policy-makers.

[1]  L. Seiford,et al.  An investigation of returns to scale in data envelopment analysis , 1999 .

[2]  S. Afriat Efficiency Estimation of Production Function , 1972 .

[3]  Abraham Charnes,et al.  Basic DEA Models , 1994 .

[4]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[5]  J. Richmond Estimating the Efficiency of Production , 1974 .

[6]  F. Førsund,et al.  A Comparative Analysis of Ferry Transport in Norway , 1994 .

[7]  R. RajivD.BANKE Estimating most productive scale size using data envelopment analysis , 2003 .

[8]  F. Førsund,et al.  On the Origins of Data Envelopment Analysis , 2000 .

[9]  Rolf Färe,et al.  Estimation of returns to scale using data envelopment analysis: A comment , 1994 .

[10]  Shawna Grosskopf,et al.  The Role of the Reference Technology in Measuring Productive Efficiency , 1986 .

[11]  R. Färe,et al.  Nonparametric Cost Approach to Scale Efficiency , 1985 .

[12]  Gang Yu,et al.  Estimating returns to scale in DEA , 1997 .

[13]  Hirofumi Fukuyama,et al.  Returns to Scale and Scale Elasticity in Farrell, Russell and Additive Models , 2001 .

[14]  Lawrence M. Seiford,et al.  On alternative optimal solutions in the estimation of returns to scale in DEA , 1998, Eur. J. Oper. Res..

[15]  R. Banker Estimating most productive scale size using data envelopment analysis , 1984 .

[16]  J. Cubbin,et al.  Public Sector Efficiency Measurement: Applications of Data Envelopment Analysis , 1992 .

[17]  Rajiv D. Banker,et al.  Estimation of returns to scale using data envelopment analysis , 1992 .

[18]  R. Färe,et al.  The measurement of efficiency of production , 1985 .

[19]  L. R. Christensen,et al.  THE ECONOMIC THEORY OF INDEX NUMBERS AND THE MEASUREMENT OF INPUT, OUTPUT, AND PRODUCTIVITY , 1982 .

[20]  Peter J. Hammond,et al.  Mathematics for economic analysis , 1995 .

[21]  D. McFadden,et al.  Production Economics: A Dual Approach to Theory and Applications (I): The Theory of Production , 1978 .

[22]  Finn R. Førsund,et al.  On the calculation of the scale elasticity in DEA models , 1996 .

[23]  A. Charnes,et al.  Data Envelopment Analysis Theory, Methodology and Applications , 1995 .

[24]  Rajiv D. Banker,et al.  A note on returns to scale in DEA , 1996 .

[25]  K. Laitinen A theory of the multiproduct firm , 1982 .

[26]  Joe Zhu,et al.  A discussion of testing DMUs' returns to scale , 1995 .

[27]  Rolf Färe,et al.  Measuring the technical efficiency of production , 1978 .

[28]  A. Charnes,et al.  Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis , 1984 .

[29]  Rajiv D. Banker,et al.  Equivalence and Implementation of Alternative Methods for Determining Returns to Scale in Data Envel , 1996 .

[30]  D. McFadden Cost, Revenue, and Profit Functions , 1978 .

[31]  Lawrence M. Seiford,et al.  Sensitivity and Stability of the Classifications of Returns to Scale in Data Envelopment Analysis , 1999 .

[32]  John C. Panzar,et al.  Economies of Scale in Multi-Output Production , 1977 .

[33]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[34]  D. Starrett,et al.  Measuring Returns to Scale in the Aggregate, and the Scale Effect of Public Goods , 1977 .

[35]  Sten Thore,et al.  Economies of scale in the US computer industry: An empirical investigation using data envelopment analysis , 1996 .

[36]  Emmanuel Thanassoulis,et al.  Introduction to the theory and application of data envelopment analysis , 2001 .

[37]  F. Førsund,et al.  Frontier Production Functions and Technical Progress: A Study of General Milk Processing in Swedish Dairy Plants , 1979 .

[38]  Hirofumi Fukuyama,et al.  Returns to scale and scale elasticity in data envelopment analysis , 2000, Eur. J. Oper. Res..

[39]  Lennart Hjalmarsson,et al.  Analyses of industrial structure : a putty-clay approach , 1987 .

[40]  Ole Bent Olesen,et al.  Indicators of ill-conditioned data sets and model misspecification in data envelopment analysis: an extended facet approach , 1996 .

[41]  Lennart Hjalmarsson,et al.  On the Measurement of Productive Efficiency , 1974 .

[42]  Toshiyuki Sueyoshi,et al.  Measuring efficiencies and returns to scale of Nippon telegraph & telephone in production and cost analyses , 1997 .

[43]  W. Cooper,et al.  Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software , 1999 .

[44]  Rajiv D. Banker,et al.  Returns to scale in different DEA models , 2004, Eur. J. Oper. Res..

[45]  A. U.S.,et al.  FORMULATION AND ESTIMATION OF STOCHASTIC FRONTIER PRODUCTION FUNCTION MODELS , 2001 .

[46]  Emmanuel Thanassoulis,et al.  Introduction to the Theory and Application of Data Envelopment Analysis: A Foundation Text with Integrated Software , 2001 .

[47]  Kenneth J. Arrow,et al.  A Textbook of Econometrics. , 1954 .

[48]  R. Färe,et al.  The Structure of Technical Efficiency , 1983 .

[49]  A. U.S.,et al.  Measuring the efficiency of decision making units , 2003 .

[50]  William W. Cooper,et al.  Chapter 1 Introduction: Extensions and new developments in DEA , 1996, Ann. Oper. Res..

[51]  Hirofumi Fukuyama Scale characterizations in a DEA directional technology distance function framework , 2003, Eur. J. Oper. Res..

[52]  Lennart Hjalmarsson,et al.  Are all Scales Optimal in DEA? Theory and Empirical Evidence , 2004 .

[53]  Kaoru Tone,et al.  A SIMPLE CHARACTERIZATION OF RETURNS TO SCALE IN DEA , 1996 .

[54]  Ragnar Frisch,et al.  Theory Of Production , 1965 .

[55]  D. Primont,et al.  Multi-Output Production and Duality: Theory and Applications , 1994 .

[56]  G. Hanoch,et al.  Homotheticity in joint production , 1970 .

[57]  F. Førsund,et al.  Generalised Farrell Measures of Efficiency: An Application to Milk Processing in Swedish Dairy Plants , 1979 .

[58]  Hemant K. Bhargava,et al.  Dea Duality on Returns to Scale (Rts) in Production and Cost Analyses: An Occurrence of Multiple Solutions and Differences Between Production-Based and Cost-Based Rts Estimates , 1999 .