Small-stencil 3D schemes for diffusive flows in porous media

In this paper, we study some discretization schemes for diffusing flows in heterogeneous anisotropic porous media. We first introduce the notion of gradient scheme, and show that several existing schemes fall in this framework. Then, we construct two new gradient schemes which have the advantage of a small stencil. Numerical results obtained for real reservoir meshes, show the efficiency of the new schemes, compared to existing ones.

[1]  I. Aavatsmark,et al.  Well Index in Reservoir Simulation for Slanted and Slightly Curved Wells in 3D Grids , 2003 .

[2]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[3]  Francois Hermeline,et al.  A finite volume method for approximating 3D diffusion operators on general meshes , 2009, J. Comput. Phys..

[4]  F. Hermeline Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes , 2007 .

[5]  F. Hermeline,et al.  Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes , 2003 .

[6]  Ivar Aavatsmark,et al.  Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous, Anisotropic Media , 1996 .

[7]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[8]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[9]  Franck Boyer,et al.  Finite Volume Method for 2D Linear and Nonlinear Elliptic Problems with Discontinuities , 2008, SIAM J. Numer. Anal..

[10]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[11]  G. Strang VARIATIONAL CRIMES IN THE FINITE ELEMENT METHOD , 1972 .

[12]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[13]  I. Faille,et al.  A control volume method to solve an elliptic equation on a two-dimensional irregular mesh , 1992 .

[14]  P. Joly,et al.  Hybrid finite element techniques for oil recovery simulation , 1989 .

[15]  Bradley T. Mallison,et al.  A New Finite-Volume Approach to Efficient Discretization on Challenging Grids , 2010 .

[16]  Yves Coudière,et al.  A 3D Discrete Duality Finite Volume Method for Nonlinear Elliptic Equations , 2009, SIAM J. Sci. Comput..

[17]  K. Karlsen,et al.  A gradient reconstruction formula for finite volume schemes and discrete duality , 2008 .

[18]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[19]  Roland Masson,et al.  Multiphase Flow in Porous Media Using the VAG Scheme , 2011 .

[20]  Raphaèle Herbin,et al.  A nine point finite volume scheme for the simulation of diffusion in heterogeneous media , 2009 .

[21]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[22]  Yves Coudière,et al.  2D/3D Discrete Duality Finite Volume (DDFV) scheme for anisotropic- heterogeneous elliptic equations, application to the electrocardiogram simulation. , 2008 .

[23]  Kenneth H. Karlsen,et al.  Convergence of discrete duality finite volume schemes for the cardiac bidomain model , 2010, Networks Heterog. Media.

[24]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[25]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[26]  Y. Coudière,et al.  A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation , 2009 .

[27]  Mary F. Wheeler,et al.  A mortar mimetic finite difference method on non-matching grids , 2005, Numerische Mathematik.

[28]  Thierry Gallouët,et al.  A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis , 2007 .