Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources

[1]  Bala Vaidhyanathan,et al.  UHTC composites for hypersonic applications , 2014 .

[2]  J. Binner,et al.  Sol–Gel Synthesis and Formation Mechanism of Ultrahigh Temperature Ceramic: HfB2 , 2014 .

[3]  Guo‐Jun Zhang,et al.  Synthesis of submicrometer HfB2 powder and its densification , 2012 .

[4]  B. Basu,et al.  Advanced Structural Ceramics , 2011 .

[5]  G. Hilmas,et al.  Densification Behavior and Microstructure Evolution of Hot-pressed HfB2 , 2011 .

[6]  D. Sciti,et al.  Spark plasma sintering of HfB2 with low additions of silicides of molybdenum and tantalum , 2010 .

[7]  A. K. Suri,et al.  Investigations on synthesis of HfB2 and development of a new composite with TiSi2 , 2010 .

[8]  Guo‐Jun Zhang,et al.  Ultrahigh temperature ceramics (UHTCs) based on ZrB2 and HfB2 systems: Powder synthesis, densification and mechanical properties , 2009 .

[9]  W. M. Henry,et al.  Advances in structure measurements of carbon black , 2009 .

[10]  Guo‐Jun Zhang,et al.  Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide , 2008 .

[11]  M. Nygren,et al.  Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering , 2008 .

[12]  D. Hui,et al.  Hafnium Reactivity with Boron and Carbon Sources Under Non‐Self‐Propagating High‐Temperature Synthesis Conditions , 2008 .

[13]  M. Nygren,et al.  Spark plasma sintering of Zr-and Hf-borides with decreasing amounts of MoSi2 as sintering aid , 2008 .

[14]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[15]  C. Melandri,et al.  Microstructure and mechanical properties of an HfB2 + 30 vol.% SiC composite consolidated by spark plasma sintering , 2006 .

[16]  Guo‐Jun Zhang,et al.  Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1800°C , 2006 .

[17]  D. Sciti,et al.  Fabrication and properties of HfB_2–MoSi_2 composites produced by hot pressing and spark plasma sintering , 2006 .

[18]  Y. Kodera,et al.  Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium Diboride , 2006 .

[19]  J. Spain,et al.  Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N) , 2004 .

[20]  S. Bégin-Colin,et al.  Mechanically activated synthesis of ultrafine rods of HfB2 and milling induced phase transformation of monocrystalline anatase particles , 2004 .

[21]  Y. Qian,et al.  Synthesis and oxidation of nanocrystalline HfB2 , 2004 .

[22]  J. W. Farrent,et al.  The influence of hydration on the tensile and compressive properties of avian keratinous tissues , 2004 .

[23]  R. Telle,et al.  Synthesis of Hard Materials by Field Activation: The Synthesis of Solid Solutions and Composites in the TiB2–WB2–CrB2 System , 2001 .

[24]  Guo‐Jun Zhang,et al.  Reactive Hot Pressing of ZrB2–SiC Composites , 2004 .

[25]  S. M. Babu,et al.  Crystal growth and characterization of sucrose single crystals , 1997 .

[26]  I. Chen,et al.  Sintering of Fine Oxide Powders: II, Sintering Mechanisms , 1997 .

[27]  Frederick F. Lange,et al.  Sinterability of Agglomerated Powders , 1984 .

[28]  A. Lyons,et al.  Thermal analysis of graphite and carbon-phenolic composites by pyrolysis-mass spectrometry , 1983 .