Generation Mechanism of Alternans in Luo-Rudy Model

Electrical alternans is the alternating amplitude from beat to beat in the action potential of the cardiac cell. It has been associated with ventricular arrhythmias in many clinical studies; however, its dynamical mechanisms remain unknown. The reason is that we do not have realistic network models of the heart system. Recently, Yazawa clarified the network structure of the heart and the central nerve system in the crustacean heart. In this study, we construct a simple model of the heart system based on Yazawa’s experimental data. Using this model, we clarify that two parameters (the conductance of sodium ions and free concentration of potassium ions in the extracellular compartment) play the key roles of generating alternans. In particular, we clarify that the inactivation gate of the time-independent potassium channel is the most important parameter. Moreover, interaction between the membrane potential and potassium ionic currents is significant for generating alternate rhythms. This result indicates th...

[1]  Daniel J Gauthier,et al.  Period-doubling bifurcation to alternans in paced cardiac tissue: crossover from smooth to border-collision characteristics. , 2007, Physical review letters.

[2]  Donald M Bers,et al.  A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. , 2004, Biophysical journal.

[3]  H. T. ter Keurs,et al.  Structure and contractile properties of the ostial muscle (musculus orbicularis ostii) in the heart of the American lobster , 1999, Journal of Comparative Physiology B.

[4]  Flavio H Fenton,et al.  Model-based control of cardiac alternans on a ring. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Garfinkel Eight (or more) kinds of alternans. , 2007, Journal of electrocardiology.

[6]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[7]  N. B. Strydom,et al.  The influence of boot weight on the energy expenditure of men walking on a treadmill and climbing steps , 2004, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[8]  T. Yazawa,et al.  Alternans Lowers the Scaling Exponent of Heartbeat Fluctuation Dynamics in Animal Models and Humans , 2007 .

[9]  R J Cohen,et al.  Electrical alternans and cardiac electrical instability. , 1988, Circulation.

[10]  D. Rosenbaum,et al.  Cellular mechanisms of arrhythmogenic cardiac alternans. , 2008, Progress in biophysics and molecular biology.

[11]  A. Karma,et al.  Off-site control of repolarization alternans in cardiac fibers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Leon Glass,et al.  A mathematical model of human atrioventricular nodal function incorporating concealed conduction , 2002, Bulletin of mathematical biology.

[13]  Daniel J. Gauthier,et al.  Control of cardiac alternans in a mapping model with memory , 2004 .

[14]  L Glass,et al.  Alternans and period-doubling bifurcations in atrioventricular nodal conduction. , 1995, Journal of theoretical biology.

[15]  J. Nolasco,et al.  A graphic method for the study of alternation in cardiac action potentials. , 1968, Journal of applied physiology.

[16]  D. Euler Cardiac alternans: mechanisms and pathophysiological significance. , 1999, Cardiovascular research.

[17]  Panagiotis D. Christofides,et al.  Studies on feedback control of cardiac alternans , 2008, Comput. Chem. Eng..

[18]  A. Garfinkel,et al.  From Pulsus to Pulseless: The Saga of Cardiac Alternans , 2006, Circulation research.

[19]  M. Koller,et al.  Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. , 1998, American journal of physiology. Heart and circulatory physiology.

[20]  Michael R. Guevara,et al.  Triggered alternans in an ionic model of ischemic cardiac ventricular muscle. , 2002, Chaos.

[21]  Robert F Gilmour,et al.  Ionic mechanism of electrical alternans. , 2002, American journal of physiology. Heart and circulatory physiology.

[22]  M. Guevara,et al.  Rhythms of high-grade block in an ionic model of a strand of regionally ischemic ventricular muscle. , 2007, Journal of theoretical biology.

[23]  C. Luo,et al.  A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. , 1991, Circulation research.

[24]  Juan G Restrepo,et al.  Spatiotemporal intracellular calcium dynamics during cardiac alternans. , 2009, Chaos.

[25]  Daniel J Gauthier,et al.  Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  R. Gilmour,et al.  Effects of [K(+)](o) on electrical restitution and activation dynamics during ventricular fibrillation. , 2000, American journal of physiology. Heart and circulatory physiology.

[27]  Blas Echebarria,et al.  Spatiotemporal control of cardiac alternans. , 2002, Chaos.

[28]  Hiroshi Kawakami,et al.  Bifurcation of periodic responses in forced dynamic nonlinear circuits: Computation of bifurcation values of the system parameters , 1984 .

[29]  D. Rosenbaum,et al.  Mechanisms of arrythmogenic cardiac alternans. , 2007, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[30]  M. Bär,et al.  Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis. , 2007, Chaos.

[31]  T A Johnson,et al.  Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. , 1988, Circulation.

[32]  Yoram Rudy,et al.  Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. , 2007, American journal of physiology. Heart and circulatory physiology.