Approximating the Rectilinear Crossing Number

A straight-line drawing of a graph G is a mapping which assigns to each vertex a point in the plane and to each edge a straight-line segment connecting the corresponding two points. The rectilinear crossing number of a graph \(G, \text {cr}(G)\), is the minimum number of pairs of crossing edges in any straight-line drawing of G. Determining or estimating \(\overline{\mathrm{cr}}(G)\) appears to be a difficult problem, and deciding if \(\overline{\mathrm{cr}}(G)\le k\) is known to be NP-hard. In fact, the asymptotic behavior of \(\overline{\mathrm{cr}}(K_n)\) is still unknown.

[1]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[2]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[3]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[4]  Jorge López,et al.  Computational search of small point sets with small rectilinear crossing number , 2014, J. Graph Algorithms Appl..

[5]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[6]  B. Ábrego,et al.  On $(\le k)$-edges, crossings, and halving lines of geometric drawings of $K_n$ , 2011 .

[7]  Jesús Leaños,et al.  On ≤k-Edges, Crossings, and Halving Lines of Geometric Drawings of Kn , 2011, Discret. Comput. Geom..

[8]  Domingos Dellamonica,et al.  An Optimal Algorithm for Finding Frieze-Kannan Regular Partitions , 2015, Comb. Probab. Comput..

[9]  M. Schaefer The Graph Crossing Number and its Variants: A Survey , 2013 .

[10]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[11]  Csaba D. Tóth,et al.  Note on k-planar crossing numbers , 2016, Comput. Geom..

[12]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[13]  J. Pach,et al.  Thirteen problems on crossing numbers , 2000 .

[14]  Joel H. Spencer,et al.  Crossing numbers of random graphs , 2002, Random Struct. Algorithms.

[15]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[16]  Marie-Françoise Roy,et al.  On the combinatorial and algebraic complexity of Quanti erEliminationS , 1994 .

[17]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[18]  Daniel Bienstock,et al.  Some provably hard crossing number problems , 1990, SCG '90.

[19]  Julia Chuzhoy,et al.  An algorithm for the graph crossing number problem , 2010, STOC '11.

[20]  Franz Aurenhammer,et al.  Enumerating Order Types for Small Point Sets with Applications , 2002, Order.

[21]  Marcus Schaefer,et al.  Complexity of Some Geometric and Topological Problems , 2009, GD.

[22]  B. Sturmfels Oriented Matroids , 1993 .

[23]  R. Pollack,et al.  Allowable Sequences and Order Types in Discrete and Computational Geometry , 1993 .

[24]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[25]  Jacob Fox,et al.  A tight lower bound for Szemerédi’s regularity lemma , 2017, Comb..

[26]  Bruce A. Reed,et al.  Computing crossing number in linear time , 2007, STOC '07.

[27]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[28]  Oswin Aichholzer,et al.  Abstract order type extension and new results on the rectilinear crossing number , 2005, EuroCG.

[29]  Sudipto Guha,et al.  Improved Approximations of Crossings in Graph Drawings and VLSI Layout Areas , 2002, SIAM J. Comput..

[30]  Nathaniel Dean,et al.  Bounds for rectilinear crossing numbers , 1993, J. Graph Theory.

[31]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[32]  Edward R. Scheinerman,et al.  The Rectilinear Crossing Number of a Complete Graph and Sylvester's "Four Point Problem" of Geometri , 1994 .

[33]  Asaf Shapira,et al.  A short proof of Gowers’ lower bound for the regularity lemma , 2016, Comb..

[34]  B. Ábrego,et al.  The Rectilinear Crossing Number of K n : Closing in (or Are We?) , 2013 .

[35]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[36]  János Pach,et al.  Density and regularity theorems for semi-algebraic hypergraphs , 2015, SODA.

[37]  M. Bálek,et al.  Large Networks and Graph Limits , 2022 .

[38]  Richard Pollack,et al.  Multidimensional Sorting , 1983, SIAM J. Comput..