Modifying Olympics Medal Table via a Stochastic Multicriteria Acceptability Analysis

This paper addresses the issue of developing a widely accepted Olympics ranking scheme based upon the Olympic Game medal table published by the International Olympic Committee, since the existing lexicographic ranking and sum ranking systems are both criticized as biases. More specifically, the lexicographic ranking system is deemed as overvaluing gold medals, while the sum ranking system fails to reveal the real value of gold medals and fails to discriminate National Olympic Committees that won equal number of medals. To start, we employ a sophisticated mathematical method based upon the incenter of a convex cone to aggregate the lexicographic ranking system. Then, we consider the fact that the preferences between the lexicographic and the sum ranking systems may not be consistent across National Olympic Committees and develop a well-designed mathematical transformation to obtain interval assessment results under typical preference. The formulation of intervals is inspired by the observation that it is extremely difficult to achieve a group consensus on the exact value of weights with respect to each ranking system, since different weight elicitation methods may produce different weight schemes. Finally, regarding the derived decision making problem involving interval-valued data, this paper utilizes the Stochastic Multicriteria Acceptability Analysis to obtain a comprehensive ranking of all National Olympic Committees. Instead of determining precise weights, this work probes the weight space to guarantee each alternative getting the most preferred one. The proposed method is illustrated by presenting a new ranking of 12 National Olympic Committees participating in the London 2012 Summer Olympic Games.

[1]  Risto Lahdelma,et al.  Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria , 2002, Eur. J. Oper. Res..

[2]  Wei Huang,et al.  SMAA-PO: project portfolio optimization problems based on stochastic multicriteria acceptability analysis , 2015, Ann. Oper. Res..

[3]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[4]  J. Mello,et al.  A Ranking for the Vancouver 2010 Winter Olympic Games Based on a Hyerarchcical Copeland Method , 2012 .

[5]  Sebastian Sitarz The medal points' incenter for rankings in sport , 2013, Appl. Math. Lett..

[6]  Liang Liang,et al.  DEA game cross-efficiency approach to Olympic rankings , 2009 .

[7]  Constantin Zopounidis,et al.  Mutual funds performance appraisal using stochastic multicriteria acceptability analysis , 2012, Appl. Math. Comput..

[8]  Salvatore Greco,et al.  Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem , 2013, Eur. J. Oper. Res..

[9]  Tommi Tervonen,et al.  JSMAA: open source software for SMAA computations , 2014, Int. J. Syst. Sci..

[10]  Risto Lahdelma,et al.  Two ways to handle dependent uncertainties in multi-criteria decision problems , 2009 .

[11]  W. Liu,et al.  Measuring the performance of nations at the Olympic Games using DEA models with different preferences , 2009, J. Oper. Res. Soc..

[12]  Annika Kangas,et al.  Using SMAA-2 method with dependent uncertainties for strategic forest planning , 2006 .

[13]  Tommi Tervonen,et al.  Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..

[14]  Luiz Biondi Neto,et al.  Cross evaluation using weight restrictions in unitary input DEA models: theoretical aspects and application to olympic games ranking , 2008 .

[15]  Tommi Tervonen,et al.  Decision Support Implementing stochastic multicriteria acceptability analysis , 2007 .

[16]  Kin Keung Lai,et al.  Measuring national energy performance via Energy Trilemma Index: A Stochastic Multicriteria Acceptability Analysis , 2017 .

[17]  Ian N. Durbach,et al.  The use of the SMAA acceptability index in descriptive decision analysis , 2009, Eur. J. Oper. Res..

[18]  João Carlos Correia,et al.  Sequential use of ordinal multicriteria methods to obtain a ranking for the 2012 Summer Olympic Games , 2014 .

[19]  Yongjun Li,et al.  Measuring Olympics achievements based on a parallel DEA approach , 2015, Ann. Oper. Res..

[20]  Sebastián Lozano,et al.  Measuring the performance of nations at the Summer Olympics using data envelopment analysis , 2002, J. Oper. Res. Soc..

[21]  João Carlos Correia Baptista Soares de Mello,et al.  A ranking for the Olympic Games with unitary input DEA models , 2008 .

[22]  Ian N. Durbach,et al.  Modelling uncertainty in stochastic multicriteria acceptability analysis , 2016 .

[23]  Yongjun Li,et al.  Models for measuring and benchmarking olympics achievements , 2008 .

[24]  Ian N. Durbach,et al.  A simulation-based test of stochastic multicriteria acceptability analysis using achievement functions , 2006, Eur. J. Oper. Res..

[25]  Jie Wu,et al.  Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method , 2009, Eur. J. Oper. Res..

[26]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[27]  P. Salminen,et al.  Prospect theory and stochastic multicriteria acceptability analysis (SMAA) , 2009 .

[28]  José Rui Figueira,et al.  The SMAA-PROMETHEE method , 2014, Eur. J. Oper. Res..

[29]  Yongjun Li,et al.  Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis , 2015, Eur. J. Oper. Res..

[30]  René Henrion,et al.  On Properties of Different Notions of Centers for Convex Cones , 2010 .

[31]  Bruce E. Barrett,et al.  Decision quality using ranked attribute weights , 1996 .

[32]  S. Greco,et al.  Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model , 2016 .

[33]  Sebastian Sitarz Mean value and volume-based sensitivity analysis for Olympic rankings , 2012, Eur. J. Oper. Res..

[34]  Salvatore Greco,et al.  Multiple Criteria Hierarchy Process for the Choquet Integral , 2013, EMO.

[35]  Eliane Gonçalves Gomes,et al.  Olympic ranking based on a zero sum gains DEA model , 2003, Eur. J. Oper. Res..

[36]  Risto Lahdelma,et al.  Classifying efficient alternatives in SMAA using cross confidence factors , 2006, Eur. J. Oper. Res..

[37]  Risto Lahdelma,et al.  Multivariate Gaussian criteria in SMAA , 2006, Eur. J. Oper. Res..

[38]  Risto Lahdelma,et al.  Stochastic multicriteria acceptability analysis using the data envelopment model , 2006, Eur. J. Oper. Res..

[39]  Ying Luo,et al.  Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making , 2010, Math. Comput. Model..

[40]  Ming Wang,et al.  Measuring Olympics performance based on a distance-based approach , 2016, Int. Trans. Oper. Res..

[41]  Risto Lahdelma,et al.  Elevator planning with stochastic multicriteria acceptability analysis , 2008 .

[42]  H. L. Hai Using vote-ranking and cross-evaluation methods to assess the performance of nations at the Olympics , 2007 .

[43]  Feng Yang,et al.  Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis , 2012, Eur. J. Oper. Res..

[44]  I. Durbach On the estimation of a satisficing model of choice using stochastic multicriteria acceptability analysis , 2009 .

[45]  René Henrion,et al.  Inradius and Circumradius of Various Convex Cones Arising in Applications , 2010 .