Modifying Olympics Medal Table via a Stochastic Multicriteria Acceptability Analysis
暂无分享,去创建一个
[1] Risto Lahdelma,et al. Locating a waste treatment facility by using stochastic multicriteria acceptability analysis with ordinal criteria , 2002, Eur. J. Oper. Res..
[2] Wei Huang,et al. SMAA-PO: project portfolio optimization problems based on stochastic multicriteria acceptability analysis , 2015, Ann. Oper. Res..
[3] Risto Lahdelma,et al. SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..
[4] J. Mello,et al. A Ranking for the Vancouver 2010 Winter Olympic Games Based on a Hyerarchcical Copeland Method , 2012 .
[5] Sebastian Sitarz. The medal points' incenter for rankings in sport , 2013, Appl. Math. Lett..
[6] Liang Liang,et al. DEA game cross-efficiency approach to Olympic rankings , 2009 .
[7] Constantin Zopounidis,et al. Mutual funds performance appraisal using stochastic multicriteria acceptability analysis , 2012, Appl. Math. Comput..
[8] Salvatore Greco,et al. Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem , 2013, Eur. J. Oper. Res..
[9] Tommi Tervonen,et al. JSMAA: open source software for SMAA computations , 2014, Int. J. Syst. Sci..
[10] Risto Lahdelma,et al. Two ways to handle dependent uncertainties in multi-criteria decision problems , 2009 .
[11] W. Liu,et al. Measuring the performance of nations at the Olympic Games using DEA models with different preferences , 2009, J. Oper. Res. Soc..
[12] Annika Kangas,et al. Using SMAA-2 method with dependent uncertainties for strategic forest planning , 2006 .
[13] Tommi Tervonen,et al. Implementing stochastic multicriteria acceptability analysis , 2007, Eur. J. Oper. Res..
[14] Luiz Biondi Neto,et al. Cross evaluation using weight restrictions in unitary input DEA models: theoretical aspects and application to olympic games ranking , 2008 .
[15] Tommi Tervonen,et al. Decision Support Implementing stochastic multicriteria acceptability analysis , 2007 .
[16] Kin Keung Lai,et al. Measuring national energy performance via Energy Trilemma Index: A Stochastic Multicriteria Acceptability Analysis , 2017 .
[17] Ian N. Durbach,et al. The use of the SMAA acceptability index in descriptive decision analysis , 2009, Eur. J. Oper. Res..
[18] João Carlos Correia,et al. Sequential use of ordinal multicriteria methods to obtain a ranking for the 2012 Summer Olympic Games , 2014 .
[19] Yongjun Li,et al. Measuring Olympics achievements based on a parallel DEA approach , 2015, Ann. Oper. Res..
[20] Sebastián Lozano,et al. Measuring the performance of nations at the Summer Olympics using data envelopment analysis , 2002, J. Oper. Res. Soc..
[21] João Carlos Correia Baptista Soares de Mello,et al. A ranking for the Olympic Games with unitary input DEA models , 2008 .
[22] Ian N. Durbach,et al. Modelling uncertainty in stochastic multicriteria acceptability analysis , 2016 .
[23] Yongjun Li,et al. Models for measuring and benchmarking olympics achievements , 2008 .
[24] Ian N. Durbach,et al. A simulation-based test of stochastic multicriteria acceptability analysis using achievement functions , 2006, Eur. J. Oper. Res..
[25] Jie Wu,et al. Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method , 2009, Eur. J. Oper. Res..
[26] Risto Lahdelma,et al. SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..
[27] P. Salminen,et al. Prospect theory and stochastic multicriteria acceptability analysis (SMAA) , 2009 .
[28] José Rui Figueira,et al. The SMAA-PROMETHEE method , 2014, Eur. J. Oper. Res..
[29] Yongjun Li,et al. Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis , 2015, Eur. J. Oper. Res..
[30] René Henrion,et al. On Properties of Different Notions of Centers for Convex Cones , 2010 .
[31] Bruce E. Barrett,et al. Decision quality using ranked attribute weights , 1996 .
[32] S. Greco,et al. Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model , 2016 .
[33] Sebastian Sitarz. Mean value and volume-based sensitivity analysis for Olympic rankings , 2012, Eur. J. Oper. Res..
[34] Salvatore Greco,et al. Multiple Criteria Hierarchy Process for the Choquet Integral , 2013, EMO.
[35] Eliane Gonçalves Gomes,et al. Olympic ranking based on a zero sum gains DEA model , 2003, Eur. J. Oper. Res..
[36] Risto Lahdelma,et al. Classifying efficient alternatives in SMAA using cross confidence factors , 2006, Eur. J. Oper. Res..
[37] Risto Lahdelma,et al. Multivariate Gaussian criteria in SMAA , 2006, Eur. J. Oper. Res..
[38] Risto Lahdelma,et al. Stochastic multicriteria acceptability analysis using the data envelopment model , 2006, Eur. J. Oper. Res..
[39] Ying Luo,et al. Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making , 2010, Math. Comput. Model..
[40] Ming Wang,et al. Measuring Olympics performance based on a distance-based approach , 2016, Int. Trans. Oper. Res..
[41] Risto Lahdelma,et al. Elevator planning with stochastic multicriteria acceptability analysis , 2008 .
[42] H. L. Hai. Using vote-ranking and cross-evaluation methods to assess the performance of nations at the Olympics , 2007 .
[43] Feng Yang,et al. Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis , 2012, Eur. J. Oper. Res..
[44] I. Durbach. On the estimation of a satisficing model of choice using stochastic multicriteria acceptability analysis , 2009 .
[45] René Henrion,et al. Inradius and Circumradius of Various Convex Cones Arising in Applications , 2010 .