Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain

[1]  H. Rehder,et al.  Prenatal phenotype of PNKP-related primary microcephaly associated with variants in the FHA and Phosphatase domain , 2021, medRxiv.

[2]  A. Pagnamenta,et al.  Clinical, neuroimaging, and molecular spectrum of TECPR2‐associated hereditary sensory and autonomic neuropathy with intellectual disability , 2020, medRxiv.

[3]  Y. Matsumoto,et al.  Linker region is required for efficient nuclear localization of polynucleotide kinase phosphatase , 2020, PloS one.

[4]  A. Leal,et al.  Mutational survivorship bias: The case of PNKP , 2020, bioRxiv.

[5]  D. Baralle,et al.  Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance , 2020, Genetics in Medicine.

[6]  U. Schmitz,et al.  The changing paradigm of intron retention: regulation, ramifications and recipes , 2019, Nucleic acids research.

[7]  C. Pantaleoni,et al.  From congenital microcephaly to adult onset cerebellar ataxia: Distinct and overlapping phenotypes in patients with PNKP gene mutations , 2019, American journal of medical genetics. Part A.

[8]  A. Angeloni,et al.  PNKP deficiency mimicking a benign hereditary chorea: The misleading presentation of a neurodegenerative disorder. , 2019, Parkinsonism & related disorders.

[9]  M. Beckmann,et al.  Targeted sequencing of FH-deficient uterine leiomyomas reveals biallelic inactivating somatic fumarase variants and allows characterization of missense variants , 2019, bioRxiv.

[10]  What's happening in Neurology® Genetics , 2019, Neurology.

[11]  A. Leal,et al.  DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria , 2019, Translational Neurodegeneration.

[12]  A. Kastaniotis,et al.  Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins , 2019, Nucleic acids research.

[13]  Tudor Groza,et al.  Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources , 2018, Nucleic Acids Res..

[14]  Gregory M. Cooper,et al.  CADD: predicting the deleteriousness of variants throughout the human genome , 2018, Nucleic Acids Res..

[15]  A. Ekici,et al.  The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy , 2018, bioRxiv.

[16]  A. Ekici,et al.  The polynucleotide kinase 3′-phosphatase gene (PNKP) is involved in Charcot-Marie-Tooth disease (CMT2B2) previously related to MED25 , 2018, neurogenetics.

[17]  Chie Nagata,et al.  Diagnostic Accuracy of Ultrasound Scanning for Prenatal Microcephaly in the context of Zika Virus Infection: A Systematic Review and Meta-analysis , 2017, Scientific Reports.

[18]  Lindsay E. Burns,et al.  Identification of human short introns , 2017, PloS one.

[19]  Nathan D. Price,et al.  iREAD: a tool for intron retention detection from RNA-seq data , 2017, BMC Genomics.

[20]  H. Rehder,et al.  Fetal Pathology of Neural Tube Defects – An Overview of 68 Cases Fetalpathologie der Neuralrohrdefekte – ein Überblick über 68 NTD-Fälle , 2017, Geburtshilfe und Frauenheilkunde.

[21]  P. Mckinnon,et al.  Polynucleotide kinase-phosphatase (PNKP) mutations and neurologic disease , 2017, Mechanisms of Ageing and Development.

[22]  C. Menck,et al.  Mutation in PNKP presenting initially as axonal Charcot-Marie-Tooth disease , 2015, Neurology: Genetics.

[23]  M. Shimada,et al.  Polynucleotide kinase–phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability , 2015, The EMBO journal.

[24]  H. Rehm,et al.  Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology , 2015, Genetics in Medicine.

[25]  J. Hardy,et al.  Mutations in PNKP Cause Recessive Ataxia with Oculomotor Apraxia Type 4 , 2015, American journal of human genetics.

[26]  P. Mckinnon Maintaining genome stability in the nervous system , 2013, Nature Neuroscience.

[27]  J. Shendure,et al.  Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 , 2013, Nature Genetics.

[28]  H. Stroink,et al.  Progressive cerebellar atrophy and polyneuropathy: expanding the spectrum of PNKP mutations , 2013, neurogenetics.

[29]  C. Walsh,et al.  Mutations in PNKP cause microcephaly, seizures and defects in DNA repair , 2010, Nature Genetics.

[30]  Laurence H. Pearl,et al.  Specific recognition of a multiply phosphorylated motif in the DNA repair scaffold XRCC1 by the FHA domain of human PNK , 2009, Nucleic acids research.

[31]  J. Allalunis-Turner,et al.  Human polynucleotide kinase participates in repair of DNA double-strand breaks by nonhomologous end joining but not homologous recombination. , 2007, Cancer research.

[32]  S. West,et al.  Involvement of human polynucleotide kinase in double‐strand break repair by non‐homologous end joining , 2002, The EMBO journal.

[33]  A. J. Mcadams Pathology of the Fetus and Infant , 1963 .

[34]  A. Verloes,et al.  Microcephaly. , 2013, Handbook of clinical neurology.

[35]  K. Nicolaides,et al.  Fetal biometry at 14–40 weeks' gestation , 1994, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[36]  J. Opitz,et al.  Microcephaly: general considerations and aids to nosology. , 1990, Journal of craniofacial genetics and developmental biology.