Toward the blue energy dream by triboelectric nanogenerator networks

Abstract Widely distributed across the globe, water wave energy is one of the most promising renewable energy sources, while little has been exploited due to various limitations of current technologies mainly relying on electromagnetic generator (EMG), especially its operation in irregular environment and low frequency (

[1]  Tao Jiang,et al.  Charging System Optimization of Triboelectric Nanogenerator for Water Wave Energy Harvesting and Storage. , 2016, ACS applied materials & interfaces.

[2]  Zhong Lin Wang,et al.  Harvesting Water Drop Energy by a Sequential Contact‐Electrification and Electrostatic‐Induction Process , 2014, Advanced materials.

[3]  Long Lin,et al.  Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator. , 2016, ACS nano.

[4]  Zhong Lin Wang,et al.  Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter , 2014 .

[5]  Weiqing Yang,et al.  Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves. , 2014, ACS nano.

[6]  Tao Jiang,et al.  Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy , 2016 .

[7]  K. Najafi,et al.  An electromagnetic micro power generator for low-frequency environmental vibrations , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[8]  Zhong Lin Wang,et al.  Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. , 2014, ACS nano.

[9]  Simiao Niu,et al.  Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low‐Frequency Water Wave Energy , 2015 .

[10]  Jianjun Luo,et al.  Integrated triboelectric nanogenerator array based on air-driven membrane structures for water wave energy harvesting , 2017 .

[11]  Zhong Lin Wang,et al.  Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. , 2012, Nano letters.

[12]  Sihong Wang,et al.  Freestanding Triboelectric‐Layer‐Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non‐contact Modes , 2014, Advanced materials.

[13]  Alireza Khaligh,et al.  Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems , 2009 .

[14]  Tao Jiang,et al.  Liquid‐Metal Electrode for High‐Performance Triboelectric Nanogenerator at an Instantaneous Energy Conversion Efficiency of 70.6% , 2015 .

[15]  Zhong Lin Wang,et al.  Triboelectric nanogenerators as self-powered active sensors , 2015 .

[16]  António F.O. Falcão,et al.  Wave energy utilization: A review of the technologies , 2010 .

[17]  Gouri S. Bhuyan,et al.  World-wide status for harnessing ocean renewable resources , 2010, IEEE PES General Meeting.

[18]  Yunlong Zi,et al.  Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. , 2016, ACS nano.

[19]  G. Zhu,et al.  A Shape‐Adaptive Thin‐Film‐Based Approach for 50% High‐Efficiency Energy Generation Through Micro‐Grating Sliding Electrification , 2014, Advanced materials.

[20]  Tao Jiang,et al.  Robust Thin Films‐Based Triboelectric Nanogenerator Arrays for Harvesting Bidirectional Wind Energy , 2016 .

[21]  Tao Jiang,et al.  Structural Optimization of Triboelectric Nanogenerator for Harvesting Water Wave Energy. , 2015, ACS nano.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  Zhong Lin Wang,et al.  Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. , 2015, ACS nano.

[24]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[25]  Yunlong Zi,et al.  A Water‐Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments , 2016 .

[26]  Tao Jiang,et al.  Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy , 2017 .

[27]  Xiaogan Li,et al.  Multifunctional TENG for Blue Energy Scavenging and Self‐Powered Wind‐Speed Sensor , 2017 .

[28]  Jeff Tollefson,et al.  Power from the oceans: Blue energy , 2014, Nature.

[29]  Zhong Lin Wang,et al.  Flutter-driven triboelectrification for harvesting wind energy , 2014, Nature Communications.

[30]  Wei Tang,et al.  Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes , 2014 .

[31]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[32]  Zhong Lin Wang Catch wave power in floating nets , 2017, Nature.

[33]  Weiqing Yang,et al.  Harvesting energy from the natural vibration of human walking. , 2013, ACS nano.

[34]  Zhong Lin Wang Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. , 2014, Faraday discussions.

[35]  Zhong Lin Wang,et al.  Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics , 2013 .

[36]  Zhong Lin Wang,et al.  Dual-mode triboelectric nanogenerator for harvesting water energy and as a self-powered ethanol nanosensor. , 2014, ACS nano.

[37]  Long Lin,et al.  Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. , 2014, ACS nano.

[38]  Yadong Jiang,et al.  Fully enclosed cylindrical single-electrode-based triboelectric nanogenerator. , 2014, ACS applied materials & interfaces.

[39]  Xiaonan Wen,et al.  Fully Enclosed Triboelectric Nanogenerators for Applications in Water and Harsh Environments , 2013 .

[40]  Frede Blaabjerg,et al.  Renewable energy resources: Current status, future prospects and their enabling technology , 2014 .

[41]  Long Lin,et al.  Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼ 55%. , 2015, ACS nano.

[42]  Ross Henderson,et al.  Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter , 2006 .

[43]  Johannes Falnes,et al.  A REVIEW OF WAVE-ENERGY EXTRACTION , 2007 .

[44]  Zhong Lin Wang,et al.  Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. , 2016, ACS nano.

[45]  Zhong Lin Wang,et al.  Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors , 2015 .

[46]  Wei Tang,et al.  Rotating‐Disk‐Based Direct‐Current Triboelectric Nanogenerator , 2014 .

[47]  Peter Frigaard,et al.  Prototype Testing of the Wave Energy Converter Wave Dragon , 2006 .

[48]  Zhong Lin Wang,et al.  Radial-arrayed rotary electrification for high performance triboelectric generator , 2014, Nature Communications.

[49]  Chenguo Hu,et al.  Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Self‐Powered Acceleration Sensor , 2014 .

[50]  Jun Chen,et al.  Harmonic‐Resonator‐Based Triboelectric Nanogenerator as a Sustainable Power Source and a Self‐Powered Active Vibration Sensor , 2013, Advanced materials.

[51]  Fengru Fan,et al.  Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy , 2014, Advanced materials.

[52]  Zhong Lin Wang On Maxwell's displacement current for energy and sensors: the origin of nanogenerators , 2017 .

[53]  Zhong Lin Wang,et al.  Flexible triboelectric generator , 2012 .

[54]  A. Wolfbrandt Automated design of a linear generator for wave energy Converters-a simplified model , 2006, IEEE Transactions on Magnetics.

[55]  Jens Peter Kofoed,et al.  Design Specifications for the Hanstholm WEPTOS Wave Energy Converter , 2012 .

[56]  Gwiy-Sang Chung,et al.  Fabrication and characterization of a low frequency electromagnetic energy harvester , 2012 .

[57]  Higinio Mora-Mora,et al.  μ-MAR: Multiplane 3D Marker based Registration for depth-sensing cameras , 2015, Expert Syst. Appl..

[58]  Zhong Lin Wang,et al.  Theoretical Study of Rotary Freestanding Triboelectric Nanogenerators , 2015 .

[59]  Tao Jiang,et al.  Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes , 2016, Nano Research.

[60]  Long Lin,et al.  Figures‐of‐Merit for Rolling‐Friction‐Based Triboelectric Nanogenerators , 2016 .

[61]  Sihong Wang,et al.  Self‐Powered Trajectory, Velocity, and Acceleration Tracking of a Moving Object/Body using a Triboelectric Sensor , 2014 .

[62]  Jun Chen,et al.  A self-powered triboelectric nanosensor for mercury ion detection. , 2013, Angewandte Chemie.

[63]  Faraday Discuss , 1985 .

[64]  Zhong Lin Wang,et al.  Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. , 2014, ACS nano.

[65]  Long Lin,et al.  Grating‐Structured Freestanding Triboelectric‐Layer Nanogenerator for Harvesting Mechanical Energy at 85% Total Conversion Efficiency , 2014, Advanced materials.

[66]  Zhong Lin Wang,et al.  Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. , 2013, ACS nano.