Exciton-exciton annihilation in hBN

Known as a prominent recombination path at high excitation densities, exciton-exciton annihilation (EEA) is evidenced in bulk hexagonal boron nitride (hBN) by cathodoluminescence at low temperature. Thanks to a careful tune of the the exciton density by varying either the current or the focus of the incident electron beam, we could estimate an EEA rate of 2$\times$10$^{-6}$ cm$^{3}$.s$^{-1}$ at $T=10$ K, the highest reported so far for a bulk semiconductor. Expected to be even stronger in nanotubes or atomic layers, EEA probablly contributes to the luminescence quenching observed in low-dimensionality BN materials.

[1]  F. Ducastelle,et al.  Bright Luminescence from Indirect and Strongly Bound Excitons in h-BN. , 2018, Physical review letters.

[2]  Kenji Watanabe,et al.  A graphene Zener–Klein transistor cooled by a hyperbolic substrate , 2017, Nature Nanotechnology.

[3]  C. Robert,et al.  Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures , 2017, 1702.00323.

[4]  B. Vignolle,et al.  Onset of exciton-exciton annihilation in single-layer black phosphorus , 2016, 1605.06998.

[5]  P. Valvin,et al.  Intervalley scattering in hexagonal boron nitride , 2016 .

[6]  F. Ducastelle,et al.  Dimensionality effects on the luminescence properties of hBN. , 2016, Nanoscale.

[7]  P. Valvin,et al.  Hexagonal boron nitride is an indirect bandgap semiconductor , 2015, Nature Photonics.

[8]  Igor Aharonovich,et al.  Quantum emission from hexagonal boron nitride monolayers , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[9]  Libai Huang,et al.  Exciton dynamics and annihilation in WS2 2D semiconductors. , 2015, Nanoscale.

[10]  G. Eda,et al.  Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation , 2014, 1405.5781.

[11]  Hongxing Jiang,et al.  Two-dimensional excitons in three-dimensional hexagonal boron nitride , 2013 .

[12]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[13]  Jorge Loayza,et al.  Excitonic recombinations in h-BN: From bulk to exfoliated layers , 2013, 1306.2850.

[14]  C. Weisbuch,et al.  Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop. , 2013, Physical review letters.

[15]  D. Snoke,et al.  Bose–Einstein condensation of excitons in Cu2O: progress over 30 years , 2012, Reports on progress in physics. Physical Society.

[16]  Kai Xiao,et al.  Exciton–Exciton Annihilation in Copper-phthalocyanine Single-Crystal Nanowires , 2012 .

[17]  N. Naka,et al.  Dynamics of excitons in a potential trap at ultra-low temperatures: paraexcitons in Cu2O , 2012 .

[18]  Kenji Watanabe,et al.  Hexagonal boron nitride as a new ultraviolet luminescent material and its application—Fluorescence properties of hBN single-crystal powder ☆☆ , 2011 .

[19]  M. Kuwata-Gonokami,et al.  Quantum inelastic collisions between paraexcitons in Cu2O , 2010 .

[20]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[21]  Takashi Taniguchi,et al.  Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride , 2009 .

[22]  I. Samuel,et al.  Exciton Diffusion Measurements in Poly(3‐hexylthiophene) , 2008 .

[23]  Annick Loiseau,et al.  Origin of the excitonic recombinations in hexagonal boron nitride by spatially resolved cathodoluminescence spectroscopy , 2007, 0707.0599.

[24]  Takashi Taniguchi,et al.  Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent , 2007 .

[25]  K. Leo,et al.  Ultrafast relaxation and exciton–exciton annihilation in PTCDA thin films at high excitation densities , 2006 .

[26]  L. Wirtz,et al.  Excitons in boron nitride nanotubes: dimensionality effects. , 2005, Physical review letters.

[27]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[28]  P. Landsberg,et al.  Recombination in semiconductors , 2003, Nature.

[29]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[30]  Schmidt,et al.  Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. , 1992, Physical review. B, Condensed matter.

[31]  H. Casey,et al.  Cathodoluminescent Measurements in GaP (Zn, O) , 1971 .

[32]  W. Marsden I and J , 2012 .