Chaotic Delone sets

We present a definition of chaotic Delone set, and establish the genericity of chaos in the space of $(\epsilon,\delta)$-Delone sets for $\epsilon\geq \delta$. We also present a hyperbolic analogue of the cut-and-project method that naturally produces examples of chaotic Delone sets.

[1]  A. Wolf,et al.  13. Quantifying chaos with Lyapunov exponents , 1986 .

[2]  B. Deroin,et al.  Topology and dynamics of laminations in surfaces of general type , 2015 .

[3]  Michael Baake,et al.  Directions in Mathematical Quasicrystals , 2000 .

[4]  F. Dal'bo Remarques sur le spectre des longueurs d'une surface et comptages , 1999 .

[5]  J. Hadamard,et al.  Les surfaces a courbures opposees et leurs lignes geodesique , 1898 .

[6]  Harold Marston Morse Recurrent geodesics on a surface of negative curvature , 1921 .

[7]  Svetlana Katok,et al.  Symbolic dynamics for the modular surface and beyond , 2006 .

[8]  Harold Marston Morse A One-to-One Representation of Geodesics on a Surface of Negative Curvature , 1921 .

[9]  P. Müller,et al.  Ergodic Properties of Randomly Coloured Point Sets , 2010, Canadian Journal of Mathematics.

[10]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[11]  Hiraku Nozawa,et al.  Genericity of chaos for colored graphs , 2021, Topological Algebra and its Applications.

[12]  Johannes Kellendonk,et al.  Topological Invariants for Projection Method Patterns , 2000 .

[13]  D. V. Anosov,et al.  Geodesic flows on closed Riemann manifolds with negative curvature , 1969 .

[14]  Michael Baake,et al.  Hulls of aperiodic solids and gap labeling theorems , 2000 .

[15]  D. Anosov,et al.  Ergodic Properties of Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature , 2020 .

[16]  Delone dynamical systems and associated random operators , 2002, math-ph/0202042.

[17]  M. Baake,et al.  Institute for Mathematical Physics Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra Dynamical Systems on Translation Bounded Measures: Pure Point Dynamical and Diffraction Spectra , 2022 .

[18]  G. A. Hedlund On the Metrical Transitivity of the Geodesics on Closed Surfaces of Constant Negative Curvature , 1934 .

[19]  J. Banks,et al.  On Devaney's definition of chaos , 1992 .

[20]  S. Matsumoto The dichotomy of harmonic measures of compact hyperbolic laminations , 2010, 1002.0394.

[21]  Chaotic group actions , 2003 .

[22]  Chaotic actions of topological semigroups , 2013 .

[23]  J. '. L'opez,et al.  Algebraic characterization of quasi-isometric spaces via the Higson compactification , 2011, 1311.3488.

[24]  D. Champernowne The Construction of Decimals Normal in the Scale of Ten , 1933 .

[25]  G. A. Hedlund,et al.  The dynamics of geodesic flows , 1939 .

[26]  Robert V. Moody,et al.  The Mathematics of Long-Range Aperiodic Order , 1997 .

[27]  M. Keane,et al.  SYMBOLIC DYNAMICS: ONE-SIDED, TWO-SIDED AND COUNTABLE STATE MARKOV SHIFTS (Universitext) By B RUCE P. K ITCHENS : 252 pp., £22.50, ISBN 3 540 62738 3 (Springer, 1998). , 2000 .

[28]  Peter A. B. Pleasants,et al.  Repetitive Delone sets and quasicrystals , 2003, Ergodic Theory and Dynamical Systems.