Dynamics of Carrier Transport in Nanoscale Materials: Origin of Non-Drude Behavior in the Terahertz Frequency Range

It is known that deviation from the Drude law for free carriers is dramatic in most electronically conductive nanomaterials. We review recent studies of the conductivity of nanoscale materials at terahertz (THz) frequencies. We suggest that among a variety of theoretical formalisms, a model of series sequence of transport involving grains and grain boundaries provides a reasonable explanation of Lorentz-type resonance (non-Drude behavior) in nanomaterials. Of particular interest is why do free carriers exhibit a Lorentz-type resonance.

[1]  Chennupati Jagadish,et al.  Transient Terahertz Conductivity of GaAs Nanowires , 2007 .

[2]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[3]  H. Bandulet,et al.  Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film , 2010 .

[4]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[5]  C. Pan,et al.  Terahertz spectroscopic study of vertically aligned InN nanorods , 2007 .

[6]  V. Sundström,et al.  Influence of plasmons on terahertz conductivity measurements , 2005 .

[7]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[8]  F. Wooten,et al.  Optical Properties of Solids , 1972 .

[9]  D. Grischkowsky,et al.  Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN , 2003 .

[10]  Jeppe C. Dyre,et al.  Universality of ac conduction in disordered solids , 2000 .

[11]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen , 1937 .

[12]  Terahertz and direct current losses and the origin of non-Drude terahertz conductivity in the crystalline states of phase change materials , 2013 .

[13]  S. Kasap,et al.  Electrical Conduction in Metals and Semiconductors , 2017 .

[14]  Zhang Xi,et al.  Materials for terahertz science and technology , 2003 .

[15]  L. Fekete,et al.  Ultrafast carrier dynamics in microcrystalline silicon probed by time-resolved terahertz spectroscopy , 2009 .

[16]  V. Sundström,et al.  Far-infrared response of free charge carriers localized in semiconductor nanoparticles , 2009 .

[17]  C. Sow,et al.  Composition-dependent ultra-high photoconductivity in ternary CdSxSe1−x nanobelts as measured by optical pump-terahertz probe spectroscopy , 2013, Nano Research.

[18]  Xiao Wei Sun,et al.  Terahertz dielectric response and optical conductivity of n-type single-crystal ZnO epilayers grown by metalorganic chemical vapor deposition , 2010 .

[19]  Rainer Wesche,et al.  Springer Handbook of Electronic and Photonic Materials , 2017 .

[20]  S. Kasap,et al.  Erratum: ``The origin of non-Drude terahertz conductivity in nanomaterials'' [Appl. Phys. Lett. 100, 132102 (2012)] , 2012 .

[21]  David G. Cooke,et al.  Transient terahertz conductivity in photoexcited silicon nanocrystal films , 2006 .

[22]  S. Kasap,et al.  The origin of non-Drude terahertz conductivity in nanomaterials , 2012 .

[23]  M. R. Freeman,et al.  Terahertz conductivity of thin gold films at the metal-insulator percolation transition , 2007 .

[24]  A. V. Gusakov,et al.  Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation , 1999 .

[25]  N. V. Smith,et al.  Classical generalization of the Drude formula for the optical conductivity , 2001 .

[26]  K. Shimakawa Electrical properties of nanocrystalline media: Optical conductivity and non-Drude behavior in the terahertz frequency range1 , 2014 .

[27]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[28]  S. Hagness,et al.  Terahertz conductivity of doped silicon calculated using the ensemble Monte Carlo/finite-difference time-domain simulation technique , 2010 .

[29]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[30]  C. Sow,et al.  Composition-dependent electron transport in CdS(x)Se(1-x) nanobelts: a THz spectroscopy study. , 2014, Optics letters.

[31]  Hanspeter Helm,et al.  Nanostructured gold films as broadband terahertz antireflection coatings , 2008 .

[32]  Sandeep Kumar,et al.  Appl. Sci , 2013 .

[33]  P. Kužel,et al.  Conductivity Mechanisms in Sb-Doped SnO2 Nanoparticle Assemblies: DC and Terahertz Regime , 2015 .

[34]  H. Němec,et al.  Bulk-like transverse electron mobility in an array of heavily n -doped InP nanowires probed by terahertz spectroscopy , 2014 .

[35]  P. Kužel,et al.  Contrast in terahertz conductivity of phase-change materials , 2012 .

[36]  F. Miyamaru,et al.  A metal-to-insulator transition in cut-wire-grid metamaterials in the terahertz region , 2010 .

[37]  Q. Li,et al.  Ultrafast terahertz conductivity of photoexcited nanocrystalline silicon , 2007 .

[38]  Jia-Min Shieh,et al.  Non-Drude Behavior in Indium-Tin-Oxide Nanowhiskers and Thin Films Investigated by Transmission and Reflection THz Time-Domain Spectroscopy , 2013, IEEE Journal of Quantum Electronics.