Subcritical contact process seen from the edge: Convergence to quasi-equilibrium
暂无分享,去创建一个
Pablo Groisman | Leonardo T. Rolla | Enrique Andjel | E. Andjel | P. Groisman | Franccois Ezanno | L. Rolla | Franccois Ezanno
[1] Servet Martínez,et al. R-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata , 1996 .
[2] Erik A. van Doorn,et al. Quasi-stationary distributions for discrete-state models , 2013, Eur. J. Oper. Res..
[3] Thomas Kuczek,et al. The Central Limit Theorem for the Right Edge of Supercritical Oriented Percolation , 1989 .
[4] E. Andjel. Convergence in distribution for subcritical 2D oriented percolation seen from its rightmost point , 2014, 1403.6990.
[5] D. Villemonais,et al. Quasi-stationary distributions and population processes , 2011, 1112.4732.
[6] R. Durrett. Oriented Percolation in Two Dimensions , 1984 .
[7] David Vere-Jones. SOME LIMIT THEOREMS FOR EVANESCENT PROCESSES , 1969 .
[8] T M Li Ge Te. Interacting Particle Systems , 2013 .
[9] Rick Durrett,et al. The critical contact process seen from the right edge , 1991 .
[10] Antonio Galves,et al. Edge fluctuations for the one dimensional supercritical contact process , 1987 .
[11] E. Seneta,et al. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states , 1966 .
[12] E. D. Andjel,et al. Edge processes of one dimensional stochastic growth models , 1990 .
[13] Geoffrey Grimmett,et al. Exponential decay for subcritical contact and percolation processes , 1991 .
[14] J. F. C. Kingman,et al. The Exponential Decay of Markov Transition Probabilities , 1963 .
[15] P. Collet,et al. Quasi-Stationary Distributions: Markov Chains, Diffusions and Dynamical Systems , 2012 .
[16] François Ezanno. Systèmes de particules en interaction et modèles de déposition aléatoire. , 2012 .
[17] T. Liggett. Interacting Particle Systems , 1985 .
[18] Pierre Collet,et al. Quasi-stationary distributions , 2011 .