Subcritical contact process seen from the edge: Convergence to quasi-equilibrium

The subcritical contact process seen from the rightmost infected site has no invariant measures. We prove that nevertheless it converges in distribution to a quasi-stationary measure supported on finite configurations.

[1]  Servet Martínez,et al.  R-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata , 1996 .

[2]  Erik A. van Doorn,et al.  Quasi-stationary distributions for discrete-state models , 2013, Eur. J. Oper. Res..

[3]  Thomas Kuczek,et al.  The Central Limit Theorem for the Right Edge of Supercritical Oriented Percolation , 1989 .

[4]  E. Andjel Convergence in distribution for subcritical 2D oriented percolation seen from its rightmost point , 2014, 1403.6990.

[5]  D. Villemonais,et al.  Quasi-stationary distributions and population processes , 2011, 1112.4732.

[6]  R. Durrett Oriented Percolation in Two Dimensions , 1984 .

[7]  David Vere-Jones SOME LIMIT THEOREMS FOR EVANESCENT PROCESSES , 1969 .

[8]  T M Li Ge Te Interacting Particle Systems , 2013 .

[9]  Rick Durrett,et al.  The critical contact process seen from the right edge , 1991 .

[10]  Antonio Galves,et al.  Edge fluctuations for the one dimensional supercritical contact process , 1987 .

[11]  E. Seneta,et al.  On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states , 1966 .

[12]  E. D. Andjel,et al.  Edge processes of one dimensional stochastic growth models , 1990 .

[13]  Geoffrey Grimmett,et al.  Exponential decay for subcritical contact and percolation processes , 1991 .

[14]  J. F. C. Kingman,et al.  The Exponential Decay of Markov Transition Probabilities , 1963 .

[15]  P. Collet,et al.  Quasi-Stationary Distributions: Markov Chains, Diffusions and Dynamical Systems , 2012 .

[16]  François Ezanno Systèmes de particules en interaction et modèles de déposition aléatoire. , 2012 .

[17]  T. Liggett Interacting Particle Systems , 1985 .

[18]  Pierre Collet,et al.  Quasi-stationary distributions , 2011 .