ON SPIKES ON LINES FOR A NEUMANN SUPERLINEAR AMBROSETTI-PRODI TYPE PROBLEM

. Given a smooth bounded domain Ω ⊂ R n and consider the problem ∂ Ω where p is subcritical exponent ( p > 1 if n = 2 and 1 < p < n +2 n − 2 if n ≥ 3), σ > 0 is a large parameter and ν denotes the outward normal of ∂ Ω. Let Γ be an interior straighline intersecting orthogonally with ∂ Ω. Assuming moreover that Γ satisfies a non-degeneracy condition, we construct a new class of solutions which consist of large number of spikes concentrating on Γ, showing as in [5, 6] that higher dimensional concentration can exist without

[1]  Zied Khemiri,et al.  Concentration on submanifolds for an Ambrosetti–Prodi type problem , 2017 .

[2]  M. Musso,et al.  Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents , 2015 .

[3]  A. Pistoia,et al.  Concentration on minimal submanifolds for a Yamabe-type problem , 2014, 1409.7321.

[4]  Juncheng Wei,et al.  An optimal bound on the number of interior spike solutions for Lin-Ni-Takagi problem , 2012, 1209.2824.

[5]  Juncheng Wei,et al.  Triple Junction Solutions for a Singularly Perturbed Neumann Problem , 2011, SIAM J. Math. Anal..

[6]  Juncheng Wei,et al.  On spikes concentrating on line-segments to a semilinear Neumann problem , 2011 .

[7]  M. Pino,et al.  Bubbling on Boundary Submanifolds for the Lin-Ni-Takagi Problem at Higher Critical Exponents , 2011, 1107.5566.

[8]  P. J. McKenna,et al.  A conjecture on multiple solutions of a nonlinear elliptic boundaryvalue problem: some numerical evidence , 2010 .

[9]  A. Malchiodi Some new entire solutions of semilinear elliptic equations on Rn , 2009 .

[10]  Juncheng Wei,et al.  Lazer–McKenna conjecture: The critical case , 2007 .

[11]  F. Lin,et al.  On the number of interior peak solutions for a singularly perturbed Neumann problem , 2007 .

[12]  E. N. Dancer,et al.  On the superlinear Lazer-McKenna conjecture: the non-homogeneous case , 2007, Advances in Differential Equations.

[13]  Juncheng Wei,et al.  Concentration on lines for a singularly perturbed Neumann problem in two-dimensional domains , 2007 .

[14]  A. Malchiodi,et al.  Concentration on minimal submanifolds for a singularly perturbed Neumann problem , 2006, math/0611558.

[15]  A. Malchiodi,et al.  Concentration at manifolds of arbitrary dimension for a singularly perturbed Neumann problem , 2006 .

[16]  J. Mawhin The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian , 2006 .

[17]  A. Malchiodi Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains , 2005 .

[18]  E. N. Dancer,et al.  On the superlinear Lazer-McKenna conjecture , 2005 .

[19]  W. Ni,et al.  Multiple clustered layer solutions for semilinear Neumann problems on a ball , 2005 .

[20]  M. Pino,et al.  BUBBLING AND CRITICALITY IN TWO AND HIGHER DIMENSIONS , 2005 .

[21]  A. Malchiodi,et al.  Multidimensional boundary layers for a singularly perturbed Neumann problem , 2004 .

[22]  A. Ambrosetti,et al.  Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part II , 2004 .

[23]  H. Meinhardt,et al.  A theory of biological pattern formation , 1972, Kybernetik.

[24]  A. Malchiodi,et al.  Boundary concentration phenomena for a singularly perturbed elliptic problem , 2002 .

[25]  Changfeng Gui,et al.  On Multiple Mixed Interior and Boundary Peak Solutions for Some Singularly Perturbed Neumann Problems , 2000, Canadian Journal of Mathematics.

[26]  E. N. Dancer A note on asymptotic uniqueness for some nonlinearities which change sign , 2000, Bulletin of the Australian Mathematical Society.

[27]  Matthias Winter,et al.  Multiple boundary peak solutions for some singularly perturbed Neumann problems , 2000 .

[28]  Changfeng Gui,et al.  Multiple interior peak solutions for some singularly perturbed neumann problems , 1999 .

[29]  E. N. Dancer,et al.  MULTIPEAK SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM , 1999 .

[30]  Juncheng Wei,et al.  On the Role of Mean Curvature in Some Singularly Perturbed Neumann Problems , 1999, SIAM J. Math. Anal..

[31]  Wei-Ming Ni,et al.  DIFFUSION, CROSS-DIFFUSION, AND THEIR SPIKE-LAYER STEADY STATES , 1998 .

[32]  E. N. Dancer On the Uniqueness of the Positive Solution of a Singularly Perturbed Problem , 1995 .

[33]  H. Bhadeshia Diffusion , 1995, Theory of Transformations in Steels.

[34]  W. Ni,et al.  On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems , 1995 .

[35]  W. Ni,et al.  Locating the peaks of least energy solutions to a semilinear Neumann problem , 1993 .

[36]  W. Ni,et al.  On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .

[37]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .

[38]  Ambrosetti-prodi Type Results in Nonlinear Boundary-value Problems , 1987 .

[39]  Alan C. Lazer,et al.  On the number of solutions of a nonlinear Dirichlet problem , 1981 .

[40]  P. Lions,et al.  Sharp existence results for a class of semilinear elliptic problems , 1981 .

[41]  Henri Berestycki,et al.  Le nombre de solutions de certains problèmes semi-linéaires elliptiques , 1981 .

[42]  Peter Hess,et al.  A multiplicity result for a class of elliptic boundary value problems , 1979, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[43]  P. Hess,et al.  On a superlinear elliptic boundary value problem , 1978 .

[44]  F. W. Warner,et al.  Remarks on some quasilinear elliptic equations , 1975 .

[45]  A. Ambrosetti,et al.  On the inversion of some differentiable mappings with singularities between Banach spaces , 1972 .