Contextual relevance feedback in web information retrieval

In this paper, we present an alternative approach to the problem of contextual relevance feedback in web-based information retrieval. Our approach utilises a rich contextual model that exploits a user's implicit and explicit data. Each user's implicit data are gathered from their Internet search histories on their local machine. The user's explicit data are captured from a lexical database, a shared contextual knowledge base and domain-specific concepts using data mining techniques and a relevance feedback approach. This data is later used by our approach to modify queries to more accurately reflect the user's interests as well as to continually build the user's contextual profile and a shared contextual knowledge base. Finally, the approach retrieves personalised or contextual search results from the search engine using the modified/expanded query. Preliminary experiments indicate that our approach has the potential to not only aid in the contextual relevance feedback but also contribute towards the long term goal of intelligent relevance feedback in web-based information retrieval.

[1]  Masatoshi Yoshikawa,et al.  Adaptive web search based on user profile constructed without any effort from users , 2004, WWW '04.

[2]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[3]  Kristian J. Hammond,et al.  Mining navigation history for recommendation , 2000, IUI '00.

[4]  Ian Witten,et al.  Data Mining , 2000 .

[5]  Bruce Krulwich,et al.  The InfoFinder Agent: Learning User Interests through Heuristic Phrase Extraction , 1997, IEEE Expert.

[6]  Dieter Fensel,et al.  Ontobroker: or how to make the WWW intelligent , 1998 .

[7]  Markus Junker,et al.  Collaborative Learning of Term-Based Concepts for Automatic Query Expansion , 2002, ECML.

[8]  Robin Burke,et al.  USING CONCEPT HIERARCHIES TO ENHANCE USER QUERIES IN WEB-BASED INFORMATION RETRIEVAL , 2003 .

[9]  ChengXiang Zhai,et al.  Implicit user modeling for personalized search , 2005, CIKM '05.

[10]  Berthier A. Ribeiro-Neto,et al.  Concept-based interactive query expansion , 2005, CIKM '05.

[11]  Tina Eliassi-Rad,et al.  A System for Building Intelligent Agents that Learn to Retrieve and Extract Information , 2003, User Modeling and User-Adapted Interaction.

[12]  W. Bruce Croft,et al.  Relevance Feedback and Personalization: A Language Modeling Perspective , 2001, DELOS.

[13]  James Allan,et al.  Incremental relevance feedback for information filtering , 1996, SIGIR '96.

[14]  Paolo Rosso,et al.  A WordNet-based Query Expansion Method for Geographical Information Retrieval , 2005, CLEF.

[15]  Chen Zhang,et al.  User term feedback in interactive text-based image retrieval , 2005, SIGIR '05.

[16]  Ingemar J. Cox,et al.  Comparing relevance feedback algorithms for web search , 2005, WWW '05.

[17]  Nazli Goharian,et al.  Query length impact on misuse detection in information retrieval systems , 2005, SAC '05.

[18]  B. S. Manjunath,et al.  Nearest neighbor search for relevance feedback , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[20]  Keiichiro Hoashi,et al.  Personalization of user profiles for content-based music retrieval based on relevance feedback , 2003, ACM Multimedia.

[21]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[22]  Susan T. Dumais,et al.  Personalizing Search via Automated Analysis of Interests and Activities , 2005, SIGIR.

[23]  Katia P. Sycara,et al.  WebMate: a personal agent for browsing and searching , 1998, AGENTS '98.

[24]  Djoerd Hiemstra,et al.  Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002 , 2003, SIGF.

[25]  Roger Zimmermann,et al.  ANNATTO: Adaptive Nearest Neighbor Queries in Travel Time Networks , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[26]  Larry Kerschberg,et al.  WebSifter II: A Personalizable Meta-Search Agent Based on Weighted Semantic Taxonomy Tree , 2001, International Conference on Internet Computing.

[27]  Jaime Teevan,et al.  Implicit feedback for inferring user preference: a bibliography , 2003, SIGF.

[28]  Clement T. Yu,et al.  Word sense disambiguation in queries , 2005, CIKM '05.

[29]  Young-Woo Seo,et al.  Personalized web-document filtering using reinforcement learning , 2001, Appl. Artif. Intell..

[30]  Filip Radlinski,et al.  Query chains: learning to rank from implicit feedback , 2005, KDD '05.

[31]  Kristian J. Hammond,et al.  Watson: Anticipating and Contextualizing Information Needs , 1999 .