MMS Observations of the Multiscale Wave Structures and Parallel Electron Heating in the Vicinity of the Southern Exterior Cusp

Understanding the physical mechanisms responsible for the cross‐scale energy transport and plasma heating from solar wind into the Earth's magnetosphere is of fundamental importance for magnetospheric physics and for understanding these processes in other places in the universe with comparable plasma parameter ranges. This paper presents observations from the Magnetosphere Multiscale (MMS) mission at the dawn‐side high‐latitude dayside boundary layer on February 25, 2016 between 18:55 and 20:05 UT. During this interval, MMS encountered both the inner and outer boundary layers with quasiperiodic low frequency fluctuations in all plasma and field parameters. The frequency analysis and growth rate calculations are consistent with the Kelvin‐Helmholtz instability (KHI). The intervals within the low frequency wave structures contained several counter‐streaming, low‐ (0–200 eV) and mid‐energy (200 eV–2 keV) electrons in the loss cone and trapped energetic (70–600 keV) electrons in alternate intervals. The counter‐streaming electron intervals were associated with large‐magnitude field‐aligned Poynting fluxes. Burst mode data at the large Alfvén velocity gradient revealed a strong correlation between counter streaming electrons, enhanced parallel electron temperatures, strong anti‐field aligned wave Poynting fluxes, and wave activity from sub‐proton cyclotron frequencies extending to electron cyclotron frequency. Waves were identified as Kinetic Alfvén waves but their contribution to parallel electron heating was not sufficient to explain the >100 eV electrons.

[1]  S. Petrinec,et al.  Magnetospheric Multiscale Observation of an Electron Diffusion Region at High Latitudes , 2020, Geophysical Research Letters.

[2]  K. Nykyri,et al.  Statistical Study of Solar Wind, Magnetosheath, and Magnetotail Plasma and Field Properties: 12+ Years of THEMIS Observations and MHD Simulations , 2020, Journal of Geophysical Research: Space Physics.

[3]  C. Russell,et al.  Magnetic Reconnection Inside a Flux Rope Induced by Kelvin‐Helmholtz Vortices , 2020, Journal of geophysical research. Space physics.

[4]  P. Delamere,et al.  Identifying Active Kelvin–Helmholtz Vortices on Saturn's Magnetopause Boundary , 2020, Geophysical Research Letters.

[5]  C. Russell,et al.  Generation of Turbulence in Kelvin‐Helmholtz Vortices at the Earth's Magnetopause: Magnetospheric Multiscale Observations , 2019, Journal of Geophysical Research: Space Physics.

[6]  K. Nykyri,et al.  Comparison Between Fluid Simulation With Test Particles and Hybrid Simulation for the Kelvin‐Helmholtz Instability , 2019, Journal of Geophysical Research: Space Physics.

[7]  S. Wing,et al.  Solar Wind Ion Entry Into the Magnetosphere During Northward IMF , 2019, Journal of geophysical research. Space physics.

[8]  L. Kistler,et al.  Mass Loading the Earth's Dayside Magnetopause Boundary Layer and Its Effect on Magnetic Reconnection , 2019, Geophysical Research Letters.

[9]  V. Angelopoulos,et al.  Can Enhanced Flux Loading by High‐Speed Jets Lead to a Substorm? Multipoint Detection of the Christmas Day Substorm Onset at 08:17 UT, 2015 , 2019, Journal of Geophysical Research: Space Physics.

[10]  V. Angelopoulos,et al.  Characteristics of the Flank Magnetopause: THEMIS Observations , 2019, Journal of geophysical research. Space physics.

[11]  J. G. Sample,et al.  The Space Physics Environment Data Analysis System (SPEDAS) , 2019, Space Science Reviews.

[12]  S. Fuselier,et al.  First MMS Observation of Energetic Particles Trapped in High‐Latitude Magnetic Field Depressions , 2019, Journal of Geophysical Research: Space Physics.

[13]  K. Nykyri,et al.  Kelvin–Helmholtz Instability: Lessons Learned and Ways Forward , 2018, Space Science Reviews.

[14]  V. Angelopoulos,et al.  In Situ Observations of a Magnetosheath High‐Speed Jet Triggering Magnetopause Reconnection , 2018 .

[15]  K. Nykyri,et al.  On the Dawn‐Dusk Asymmetry of the Kelvin‐Helmholtz Instability Between 2007 and 2013 , 2017 .

[16]  K. Nykyri,et al.  Ion‐Scale Wave Properties and Enhanced Ion Heating Across the Low‐Latitude Boundary Layer During Kelvin‐Helmholtz Instability , 2017 .

[17]  H. Karimabadi,et al.  Dawn-dusk asymmetries of the Earth's dayside magnetosheath in the Magnetosheath InterPlanetary Medium reference frame , 2017 .

[18]  P. Delamere,et al.  Plasma Transport Driven by the Three‐Dimensional Kelvin‐Helmholtz Instability , 2017 .

[19]  C. Foullon,et al.  Influence of velocity fluctuations on the Kelvin‐Helmholtz instability and its associated mass transport , 2017 .

[20]  D. Baker,et al.  Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause , 2017 .

[21]  C. Norgren,et al.  Large‐scale characteristics of reconnection diffusion regions and associated magnetopause crossings observed by MMS , 2017 .

[22]  S. Petrinec,et al.  Occurrence frequency and location of magnetic islands at the dayside magnetopause , 2017 .

[23]  P. Delamere,et al.  Local time dependence of turbulent magnetic fields in Saturn's magnetodisc , 2017 .

[24]  C. Russell,et al.  Wave-particle energy exchange directly observed in a kinetic Alfvén-branch wave , 2017, Nature Communications.

[25]  C. Norgren,et al.  Lower hybrid waves in the ion diffusion and magnetospheric inflow regions , 2017 .

[26]  S. Schwartz,et al.  Observations of turbulence in a Kelvin‐Helmholtz event on 8 September 2015 by the Magnetospheric Multiscale mission , 2016 .

[27]  M. Goldman,et al.  Observations of large‐amplitude, parallel, electrostatic waves associated with the Kelvin‐Helmholtz instability by the magnetospheric multiscale mission , 2016 .

[28]  K. Nykyri,et al.  Cross-scale energy transport in space plasmas , 2016, Nature Physics.

[29]  H. Zhang,et al.  Interaction between reconnection and Kelvin–Helmholtz at the high-latitude magnetopause , 2016 .

[30]  K. Nykyri,et al.  Statistical study of the ULF Pc4-Pc5 range fluctuations in the vicinity of Earth's magnetopause and correlation with the Low Latitude Boundary Layer thickness , 2016 .

[31]  C. Russell,et al.  Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin‐Helmholtz waves , 2016 .

[32]  C. Russell,et al.  Kinetic evidence of magnetic reconnection due to Kelvin‐Helmholtz waves , 2016 .

[33]  J. Sauvaud,et al.  Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause , 2016 .

[34]  U. Gliese,et al.  Fast Plasma Investigation for Magnetospheric Multiscale , 2016 .

[35]  T. Nguyen,et al.  The Fly’s Eye Energetic Particle Spectrometer (FEEPS) Sensors for the Magnetospheric Multiscale (MMS) Mission , 2016 .

[36]  Wolfgang Baumjohann,et al.  The Magnetospheric Multiscale Magnetometers , 2016 .

[37]  Per-Arne Lindqvist,et al.  The Axial Double Probe and Fields Signal Processing for the MMS Mission , 2016 .

[38]  Wolfgang Baumjohann,et al.  The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products , 2016 .

[39]  P. Lindqvist,et al.  The Spin-Plane Double Probe Electric Field Instrument for MMS , 2016 .

[40]  Thomas E. Moore,et al.  Magnetospheric Multiscale Overview and Science Objectives , 2016 .

[41]  A. Valavanoglou,et al.  The Search-Coil Magnetometer for MMS , 2016 .

[42]  S. Persyn,et al.  Hot Plasma Composition Analyzer for the Magnetospheric Multiscale Mission , 2016 .

[43]  J. Eastwood,et al.  Ion temperature anisotropy across a magnetotail reconnection jet , 2015, Geophysical research letters.

[44]  H. Karimabadi,et al.  A statistical study into the spatial distribution and dawn‐dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions , 2015 .

[45]  C. P. Escoubet,et al.  Review of Solar Wind Entry into and Transport Within the Plasma Sheet , 2014 .

[46]  A. Otto,et al.  Nonadiabatic heating in magnetic reconnection , 2014 .

[47]  S. Wing,et al.  Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review , 2014, 1701.04701.

[48]  P. Delamere,et al.  Interaction of magnetic reconnection and Kelvin‐Helmholtz modes for large magnetic shear: 1. Kelvin‐Helmholtz trigger , 2014 .

[49]  P. Delamere,et al.  Interaction of magnetic reconnection and Kelvin‐Helmholtz modes for large magnetic shear: 2. Reconnection trigger , 2014 .

[50]  R. Nakamura,et al.  Alternative interpretation of results from Kelvin‐Helmholtz vortex identification criteria , 2013 .

[51]  J. Lyon,et al.  Kelvin‐Helmholtz instability of the magnetospheric boundary in a three‐dimensional global MHD simulation during northward IMF conditions , 2013 .

[52]  C. Foullon,et al.  First magnetic seismology of the CME reconnection outflow layer in the low corona with 2.5‐D MHD simulations of the Kelvin‐Helmholtz instability , 2013 .

[53]  M. Balikhin,et al.  Geoscientiic Geoscientiic Geoscientiic Geoscientiic Dispersion of low frequency plasma waves upstream of the quasi-perpendicular terrestrial bow shock , 2018 .

[54]  K. Nykyri Impact of MHD shock physics on magnetosheath asymmetry and Kelvin‐Helmholtz instability , 2013 .

[55]  K. Nykyri,et al.  The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame , 2013 .

[56]  T. Phan,et al.  Fluid Aspects of Reconnection at the Magnetopause: In Situ Observations , 2013 .

[57]  K. Nykyri,et al.  Kelvin-Helmholtz instability and magnetic reconnection: Mass transport at the LLBL , 2013 .

[58]  P. Sulem,et al.  POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVÉN WAVES , 2012 .

[59]  V. Angelopoulos,et al.  Magnetopause surface waves: THEMIS observations compared to MHD theory , 2012 .

[60]  E. Kronberg,et al.  On the Origin of High-Energy Particles in the Cusp Diamagnetic Cavity , 2012 .

[61]  M. M. Kuznetsova,et al.  The first in situ observation of Kelvin‐Helmholtz waves at high‐latitude magnetopause during strongly dawnward interplanetary magnetic field conditions , 2012 .

[62]  S. Petrinec,et al.  Dayside magnetic topology at the Earth's magnetopause for northward IMF , 2012 .

[63]  V. Angelopoulos,et al.  Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet , 2012 .

[64]  R. Denton,et al.  Whistler anisotropy instability with a cold electron component: Linear theory , 2012 .

[65]  K. Nykyri,et al.  3-D mesoscale MHD simulations of magnetospheric cusp-like configurations: cusp diamagnetic cavities and boundary structure , 2012 .

[66]  R. Wilson,et al.  Kelvin‐Helmholtz instability at Saturn's magnetopause: Hybrid simulations , 2011 .

[67]  S. Petrinec,et al.  Antiparallel and component reconnection at the dayside magnetopause , 2011 .

[68]  K. Nykyri,et al.  On the origin of fluctuations in the cusp diamagnetic cavity , 2011 .

[69]  J. Borovsky,et al.  Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit , 2011 .

[70]  K. Nykyri,et al.  3-D mesoscale MHD simulations of a cusp-like magnetic configuration: method and first results , 2011 .

[71]  C. Owen,et al.  Plasma jet braking: energy dissipation and nonadiabatic electrons. , 2011, Physical review letters.

[72]  K. Nykyri,et al.  Cluster observations of a cusp diamagnetic cavity: Structure, size, and dynamics , 2011 .

[73]  M. Fujimoto,et al.  Evolution of an MHD‐scale Kelvin‐Helmholtz vortex accompanied by magnetic reconnection: Two‐dimensional particle simulations , 2010 .

[74]  Andris Vaivads,et al.  Kelvin-Helmholtz waves at the Earth's magnetopause: Multiscale development and associated reconnection , 2009 .

[75]  M. Cowee,et al.  2D hybrid simulations of super-diffusion at the magnetopause driven by Kelvin-Helmholtz instability , 2009 .

[76]  C. Russell,et al.  Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations , 2009 .

[77]  M. Acuna,et al.  Kinetic Alfvén Wave Turbulence and Transport through a Reconnection Diffusion Region. , 2008, Physical Review Letters.

[78]  H. Auster,et al.  Turbulent heating and cross‐field transport near the magnetopause from THEMIS , 2008 .

[79]  M. Fujimoto,et al.  Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth's magnetopause. , 2007, Physical review letters.

[80]  A. Balogh,et al.  Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank , 2006 .

[81]  M. Fujimoto,et al.  Single-spacecraft detection of rolled-up Kelvin-Helmholtz vortices at the flank magnetopause , 2006 .

[82]  B. Lavraud,et al.  Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations , 2006 .

[83]  A. Lazarus,et al.  Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations , 2006 .

[84]  M. Acuna,et al.  Drift-kinetic Alfvén waves observed near a reconnection X line in the earth's magnetopause. , 2005, Physical review letters.

[85]  J. Raeder,et al.  Plasma sheet formation during long period of northward IMF , 2005 .

[86]  David G. Sibeck,et al.  Kp forecast models , 2005 .

[87]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[88]  H. Hasegawa,et al.  Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices , 2004, Nature.

[89]  K. Nykyri,et al.  Influence of the Hall Term on KH Instability and Reconnection Inside KH Vortices , 2004 .

[90]  Masahiro Hoshino,et al.  Onset of turbulence induced by a Kelvin‐Helmholtz vortex , 2004 .

[91]  S. Gary,et al.  Resonant electron firehose instability: Particle-in-cell simulations , 2003 .

[92]  M. Fujimoto,et al.  Geotail observations of the dayside outer boundary region: Interplanetary magnetic field control and dawn‐dusk asymmetry , 2003 .

[93]  J. Johnson,et al.  Stochastic ion heating at the magnetopause due to kinetic Alfvén waves , 2001 .

[94]  K. Nykyri,et al.  Plasma transport at the magnetospheric boundary due to reconnection in Kelvin‐Helmholtz vortices , 2001 .

[95]  P. Song,et al.  Signatures of mode conversion and kinetic Alfvén waves at the magnetopause , 2001 .

[96]  J. Steinberg,et al.  Geotail observations of the Kelvin‐Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields , 2000 .

[97]  J. Drake,et al.  Whistler turbulence at the magnetopause: 1. Reduced equations and linear theory , 1999 .

[98]  J. Keyser,et al.  Resonant amplification of MHD waves in realistic subsolar magnetopause configurations , 1999 .

[99]  J. Johnson,et al.  Kinetic Alfvén waves and plasma transport at the magnetopause , 1997 .

[100]  Wolfgang Baumjohann,et al.  Experimental determination of the dispersion of waves observed upstream of a quasi‐perpendicular shock , 1997 .

[101]  Nikolai A. Tsyganenko,et al.  Effects of the solar wind conditions on the global magnetospheric configuration as deduced from data-based field models , 1996 .

[102]  L. Rezeau,et al.  Resonant amplification of magnetosheath MHD fluctuations at the magnetopause , 1995 .

[103]  R. Winglee,et al.  Dawn‐dusk asymmetries in the low‐latitude boundary layer arising from the Kelvin‐Helmholtz instability: A particle simulation , 1995 .

[104]  Lou‐Chuang Lee,et al.  Kinetic Alfven waves as a source of plasma transport at the dayside magnetopause , 1994 .

[105]  Drake,et al.  Structure of thin current layers: Implications for magnetic reconnection. , 1994, Physical review letters.

[106]  M. Fujimoto,et al.  Anomalous ion mixing within an MHD scale Kelvin-Helmholtz vortex , 1994 .

[107]  D. Winske,et al.  Kinetic simulations of the Kelvin-Helmholtz instability at the magnetopause , 1993 .

[108]  C. Russell,et al.  Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field , 1992 .

[109]  A. Otto,et al.  3D resistive MHD computations of magnetospheric physics , 1990 .

[110]  A. Miura,et al.  Nonlocal stability analysis of the MHD Kelvin-Helmholtz instability in a compressible plasma. [solar wind-magnetosphere interaction] , 1982 .

[111]  I. Papamastorakis,et al.  Evidence for magnetic field reconnection at the Earth's magnetopause , 1981 .

[112]  E. W. Hones,et al.  Structure of the low‐latitude boundary layer , 1980 .

[113]  I. Papamastorakis,et al.  Plasma acceleration at the Earth's magnetopause: evidence for reconnection , 1979, Nature.

[114]  C. T. Russell,et al.  Initial ISEE magnetometer results: magnetopause observations , 1978 .

[115]  Christopher T. Russell,et al.  Initial ISEE magnetometer results - Magnetopause observations , 1978 .

[116]  A. Hasegawa,et al.  Anomalous transport produced by kinetic Alfvén wave turbulence , 1978 .

[117]  A. Hasegawa Particle acceleration by MHD surface wave and formation of aurora , 1976 .

[118]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[119]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[120]  M. Dunlop,et al.  The plasma sheet and boundary layers under northward IMF: A multi-point and multi-instrument perspective , 2008 .

[121]  K. Nykyri Influence of the Kelvin-Helmholtz Instability on the Plasma Transport at the Magnetospheric Boundary , 2002 .

[122]  L. J. Cahill,et al.  Magnetopause structure and attitude from Explorer 12 observations. , 1967 .

[123]  ’. Otto Kelvin-Helmholtz Instability at the Magnetotail Boundary: MHD Simulation and Comparison with Geotail Observations , 2022 .