Electric-field control of magnetic domain wall motion and local magnetization reversal

Spintronic devices currently rely on magnetic switching or controlled motion of domain walls by an external magnetic field or spin-polarized current. Achieving the same degree of magnetic controllability using an electric field has potential advantages including enhanced functionality and low power consumption. Here we report on an approach to electrically control local magnetic properties, including the writing and erasure of regular ferromagnetic domain patterns and the motion of magnetic domain walls, in CoFe-BaTiO3 heterostructures. Our method is based on recurrent strain transfer from ferroelastic domains in ferroelectric media to continuous magnetostrictive films with negligible magnetocrystalline anisotropy. Optical polarization microscopy of both ferromagnetic and ferroelectric domain structures reveals that domain correlations and strong inter-ferroic domain wall pinning persist in an applied electric field. This leads to an unprecedented electric controllability over the ferromagnetic microstructure, an accomplishment that produces giant magnetoelectric coupling effects and opens the way to electric-field driven spintronics.

[1]  R. C. Hall Magnetic Anisotropy and Magnetostriction of Ordered and Disordered Cobalt-Iron Alloys , 1960 .

[2]  S. van Dijken,et al.  Pattern Transfer and Electric‐Field‐Induced Magnetic Domain Formation in Multiferroic Heterostructures , 2011, Advanced materials.

[3]  Shan X. Wang,et al.  Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. , 2008, Nature materials.

[4]  I. Mertig,et al.  Magnetic phase transition in two-phase multiferroics predicted from first principles , 2008 .

[5]  M. Brandt,et al.  In situ manipulation of magnetic anisotropy in magnetite thin films , 2008 .

[6]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[7]  J. Rantschler,et al.  Structure, stress, and magnetic properties of high saturation magnetization films of FeCo , 2004, IEEE Transactions on Magnetics.

[8]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[9]  C. Binek,et al.  Robust isothermal electric control of exchange bias at room temperature. , 2010, Nature materials.

[10]  A Gloter,et al.  Interface-induced room-temperature multiferroicity in BaTiO₃. , 2011, Nature materials.

[11]  C. Vittoria,et al.  Electrically controlled magnetization switching in a multiferroic heterostructure , 2010 .

[12]  A. Marty,et al.  Electric Field-Induced Modification of Magnetism in Thin-Film Ferromagnets , 2007, Science.

[13]  C. Vaz,et al.  Magnetoelectric Effects in Complex Oxides with Competing Ground States , 2009 .

[14]  Influence of strain on the magnetization and magnetoelectric effect inLa0.7A0.3MnO3∕PMN−PT(001)(A=Sr,Ca) , 2006, cond-mat/0609760.

[15]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[16]  N. D. Mathur,et al.  Ferroelectric Control of Spin Polarization , 2010, Science.

[17]  R. Gross,et al.  Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures , 2010 .

[18]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[19]  Chun-Gang Duan,et al.  Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. , 2006, Physical review letters.

[20]  E. Tsymbal,et al.  Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface , 2008 .

[21]  K. Bouzehouane,et al.  Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. , 2007, Physical review letters.

[22]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[23]  A. Demkov,et al.  Interfacial magnetoelectric coupling in tricomponent superlattices , 2009, 0912.3492.

[24]  J. Prieto,et al.  Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. , 2007, Nature materials.

[25]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[26]  N. Sun,et al.  Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate–Lead Titanate (PZN‐PT) Heterostructures , 2009 .

[27]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[28]  Electric-field control of exchange bias in multiferroic epitaxial heterostructures. , 2006, Physical review letters.

[29]  Christian Binek,et al.  Magnetoelectric switching of exchange bias. , 2005, Physical review letters.

[30]  E. Tsymbal,et al.  Ferroelectric control of magnetism in BaTiO3 /Fe heterostructures via interface strain coupling , 2007 .

[31]  A. Mougin,et al.  Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. , 2009, Physical review letters.

[32]  A. D. Rata,et al.  A model system for strain effects: epitaxial magnetic films on a piezoelectric substrate , 2009 .

[33]  M. Itoh,et al.  Manipulation of magnetic coercivity of Fe film in Fe/BaTiO3 heterostructure by electric field , 2011 .