Advances in correlated electronic structure methods for solids, surfaces, and nanostructures.

Calculations of the electronic structure of solids began decades ago, but only recently have solid-state quantum techniques become sufficiently reliable that their application is nearly as routine as quantum chemistry is for molecules. We aim to introduce chemists to the pros and cons of first-principles methods that can provide atomic-scale insight into the properties and chemistry of bulk materials, interfaces, and nanostructures. The techniques we review include the ubiquitous density functional theory (DFT), which is often sufficient, especially for metals; extensions such as DFT + U and hybrid DFT, which incorporate exact exchange to rid DFT of its spurious self-interactions (critical for some semiconductors and strongly correlated materials); many-body Green's function (GW and Bethe-Salpeter) methods for excited states; quantum Monte Carlo, in principle an exact theory but for which forces (hence structure optimization and dynamics) are problematic; and embedding theories that locally refine the quantum treatment to improve accuracy.

[1]  Vogl,et al.  Generalized Kohn-Sham schemes and the band-gap problem. , 1996, Physical review. B, Condensed matter.

[2]  J. Grossman,et al.  Structure and Stability of Molecular Carbon: Importance of Electron Correlation [Phys. Rev. Lett. 75, 3870 (1995)] , 1996 .

[3]  Ku and Eguiluz Reply , 2004 .

[4]  Christensen,et al.  Relativistic and core-relaxation effects on the energy bands of gallium arsenide and germanium. , 1985, Physical review. B, Condensed matter.

[5]  Georg Kresse,et al.  Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)] , 2006 .

[6]  J. Chelikowsky,et al.  TOPICAL REVIEW: Time-dependent density-functional calculations for the optical spectra of molecules, clusters, and nanocrystals , 2003 .

[7]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[8]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[9]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[10]  Hai Lin,et al.  QM/MM: What Have We Learned, Where Are We, and Where Do We Go from Here? , 2007 .

[11]  Adolfo G. Eguiluz,et al.  SELF-CONSISTENT CALCULATIONS OF QUASIPARTICLE STATES IN METALS AND SEMICONDUCTORS , 1998 .

[12]  N. Rösch,et al.  On cluster embedding schemes based on orbital space partitioning , 1997 .

[13]  Angel Rubio,et al.  TDDFT from Molecules to Solids: The Role of Long-Range Interactions , 2005 .

[14]  R. Leeuwen,et al.  Analysis of the Vignale-Kohn current functional in the calculation of the optical spectra of semiconductors , 2007 .

[15]  U. Birkenheuer,et al.  Multireference configuration interaction treatment of excited-state electron correlation in periodic systems: the band structure of trans-polyacetylene , 2004, cond-mat/0407382.

[16]  Dennis R. Salahub,et al.  Dynamic polarizabilities and excitation spectra from a molecular implementation of time‐dependent density‐functional response theory: N2 as a case study , 1996 .

[17]  Joachim Sauer,et al.  Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems , 2000, Journal of Computational Chemistry.

[18]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[20]  J. Vail Theory of electronic defects: Applications to MgO and alkali halides , 1990 .

[21]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[22]  Michael Frenklach,et al.  Molecular dynamics with combined quantum and empirical potentials: C2H2 adsorption on Si(100) , 1993 .

[23]  C. Pisani Approach to the embedding problem in chemisorption in a self-consistent-field-molecular-orbital formalism , 1978 .

[24]  Comparison of localization procedures for applications in crystal embedding , 2004, physics/0401108.

[25]  Louie,et al.  First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. , 1985, Physical review letters.

[26]  L. Seijo,et al.  Ab initio model potential embedded cluster calculations including lattice relaxation and polarization: Local distortions on Mn2+‐doped CaF2 , 1995 .

[27]  Aryasetiawan Self-energy of ferromagnetic nickel in the GW approximation. , 1992, Physical review. B, Condensed matter.

[28]  Mosé Casalegno,et al.  Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization , 2003 .

[29]  Lubos Mitas Electronic structure by quantum Monte Carlo: atoms, molecules and solids , 1996 .

[30]  R Dovesi,et al.  Local-MP2 electron correlation method for nonconducting crystals. , 2005, The Journal of chemical physics.

[31]  Efthimios Kaxiras,et al.  From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals , 2005, cond-mat/0506006.

[32]  R. Orlando,et al.  CRYSTAL and EMBED, two computational tools for the ab initio study of electronic properties of crystals , 2000 .

[33]  Freeman,et al.  Self-energy correction for the energy bands of silicon by the full-potential linearized augmented-plane-wave method: Effect of the valence-band polarization. , 1990, Physical review. B, Condensed matter.

[34]  SINGLE-PARTICLE SPECTRUM OF THE DEGENERATE ELECTRON GAS. I. THE STRUCTURE OF THE SPECTRAL WEIGHT FUNCTION. , 1967 .

[35]  K. Fiedler,et al.  Monte Carlo Methods in Ab Initio Quantum Chemistry , 1995 .

[36]  John P. Perdew,et al.  Molecular and solid‐state tests of density functional approximations: LSD, GGAs, and meta‐GGAs , 1999 .

[37]  J. Grossman,et al.  Structure and stability of molecular carbon: Importance of electron correlation. , 1995, Physical review letters.

[38]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[39]  L. Reining,et al.  Time-dependent density-functional theory for extended systems , 2007 .

[40]  A. Warshel,et al.  Frozen density functional approach for ab initio calculations of solvated molecules , 1993 .

[41]  Kieron Burke,et al.  Time-dependent density functional theory: past, present, and future. , 2005, The Journal of chemical physics.

[42]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[43]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2004, Physical review letters.

[44]  Giulia Galli,et al.  Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. , 2002, Physical review letters.

[45]  G. Kresse,et al.  Implementation and performance of the frequency-dependent GW method within the PAW framework , 2006 .

[46]  S. Lebègue,et al.  Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH , 2003, cond-mat/0301320.

[47]  Yi Liu,et al.  An improved QM/MM approach for metals , 2007 .

[48]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[49]  K. Burke,et al.  Why semilocal functionals work: Accuracy of the on-top pair density and importance of system averaging , 1998 .

[50]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[51]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[52]  Feliu Maseras,et al.  IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states , 1995, J. Comput. Chem..

[53]  Jordi Casanovas,et al.  Madelung fields from optimized point charges for ab initio cluster model calculations on ionic systems , 1993, J. Comput. Chem..

[54]  L. Kleinman,et al.  Good semiconductor band gaps with a modified local-density approximation. , 1990, Physical review. B, Condensed matter.

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[57]  D. Hamann Semiconductor Charge Densities with Hard-Core and Soft-Core Pseudopotentials , 1979 .

[58]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[59]  Takashi Miyake,et al.  Efficient algorithm for calculating noninteracting frequency-dependent linear response functions , 2000 .

[60]  E. Carter,et al.  Local electronic structure around a single Kondo impurity. , 2006, Nano letters.

[61]  M. Rohlfing Excited states of molecules from Green's function perturbation techniques , 2000 .

[62]  J. Grossman,et al.  Linear-scaling quantum Monte Carlo calculations. , 2001, Physical review letters.

[63]  M. Schlüter,et al.  Self-energy operators and exchange-correlation potentials in semiconductors. , 1988, Physical review. B, Condensed matter.

[64]  M. Devillers Cluster models for surface and bulk phenomena , 1993 .

[65]  J. Perdew,et al.  Electronic structure of solids , 2021, Modern Physics with Modern Computational Methods.

[66]  Notker Rösch,et al.  Elastic Polarizable Environment Cluster Embedding Approach for Covalent Oxides and Zeolites Based on a Density Functional Method , 2003 .

[67]  K. Burke,et al.  Perdew, Burke, and Ernzerhof Reply: , 1998 .

[68]  J. Inglesfield,et al.  Embedding at surfaces , 2001 .

[69]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[70]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[71]  Johannes Neugebauer,et al.  The merits of the frozen-density embedding scheme to model solvatochromic shifts. , 2005, The Journal of chemical physics.

[72]  F. Bechstedt,et al.  Many-body effects on one-electron energies and wave functions in low-dimensional systems , 2001 .

[73]  T. Kotani,et al.  All-electron GW approximation with the mixed basis expansion based on the full-potential LMTO method , 2001, cond-mat/0111019.

[74]  Lucia Reining,et al.  Ab initio calculation of the quasiparticle spectrum and excitonic effects in Li 2 O , 1997 .

[75]  M. van Schilfgaarde,et al.  Adequacy of approximations in GW theory , 2006 .

[76]  N. Govind,et al.  Prediction of electronic excited states of adsorbates on metal surfaces from first principles. , 2001, Physical review letters.

[77]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[78]  Schlüter,et al.  Density-functional theory of the band gap. , 1985, Physical review. B, Condensed matter.

[79]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[80]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[81]  M. J. Gillan,et al.  LETTER TO THE EDITOR: Linear-scaling quantum Monte Carlo technique with non-orthogonal localized orbitals , 2004 .

[82]  R. Needs,et al.  Diffusion quantum Monte Carlo calculations of the excited states of silicon , 1998 .

[83]  C. H. Patterson Comparison of hybrid density functional, Hartree–Fock, and GW calculations on NiO , 2006 .

[84]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[85]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[86]  J. Whitten,et al.  Theory of chemisorption and reactions on metal surfaces , 1996 .

[87]  Holm,et al.  Self-consistent GW0 results for the electron gas: Fixed screened potential W0 within the random-phase approximation. , 1996, Physical review. B, Condensed matter.

[88]  N. Rösch,et al.  The moderately-large-embedded-cluster method for metal surfaces; a density-functional study of atomic adsorption , 1994 .

[89]  O. Gunnarsson,et al.  Density-functional calculation of effective Coulomb interactions in metals. , 1991, Physical review. B, Condensed matter.

[90]  Emily A Carter,et al.  Self-consistent embedding theory for locally correlated configuration interaction wave functions in condensed matter. , 2006, The Journal of chemical physics.

[91]  Hong Yang,et al.  Theoretical studies of surface reactions on metals , 1995 .

[92]  Mark S. Gordon,et al.  SIMOMM: An Integrated Molecular Orbital/Molecular Mechanics Optimization Scheme for Surfaces , 1999 .

[93]  G Galli,et al.  Electron emission from diamondoids: a diffusion quantum Monte Carlo study. , 2005, Physical review letters.

[94]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[95]  S. Tanaka Variational Quantum Monte Carlo Approach to the Electronic Structure of NiO , 1995 .

[96]  Emily A. Carter,et al.  Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states , 2002 .

[97]  L. Seijo,et al.  The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion on NaCl:Cu+ , 1988 .

[98]  Rodney J. Bartlett,et al.  Second‐order many‐body perturbation‐theory calculations in extended systems , 1996 .

[99]  T. Klüner,et al.  A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111) , 2007 .

[100]  Kohn,et al.  Current-Dependent Exchange-Correlation Potential for Dynamical Linear Response Theory. , 1996, Physical review letters.

[101]  N. Govind,et al.  Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems , 1999 .

[102]  A. Edwards,et al.  Asymmetry and long-range character of lattice deformation by neutral oxygen vacancy in α-quartz , 2002 .

[103]  Mark E. Casida,et al.  Time-Dependent Density Functional Response Theory of Molecular Systems: Theory, Computational Methods, and Functionals , 1996 .

[104]  Bengt Holm,et al.  TOTAL ENERGIES FROM GW CALCULATIONS , 1999 .

[105]  Michael D. Towler,et al.  The quantum Monte Carlo method , 2006 .

[106]  U. V. Barth,et al.  Fully self-consistent GW self-energy of the electron gas , 1998 .

[107]  N. Govind,et al.  Klüner et al. Reply , 2002 .

[108]  Tomasz A Wesołowski Comment on "Prediction of electronic excited states of adsorbates on metal surfaces from first principles". , 2002, Physical review letters.

[109]  K. Hermansson,et al.  Comparison of methods for point‐charge representation of electrostatic fields , 2004 .

[110]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[111]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[112]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[113]  Emily A. Carter,et al.  Linear-scaling parallel algorithms for the first principles treatment of metals ✩ , 2000 .

[114]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[115]  D. Ceperley,et al.  Nonlocal pseudopotentials and diffusion Monte Carlo , 1991 .

[116]  Emily A. Carter,et al.  Accurate ab initio energetics of extended systems via explicit correlation embedded in a density functional environment , 1998 .

[117]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[118]  R. Needs,et al.  Dynamic image potential at an Al(111) surface , 1997, cond-mat/9711245.

[119]  Emily A. Carter,et al.  Embedded Configuration Interaction Description of CO on Cu(111): Resolution of the Site Preference Conundrum , 2008 .

[120]  R. Schepe,et al.  Comment on ``Self-Consistent Calculations of Quasiparticle States in Metals and Semiconductors'' , 1999 .

[121]  Lars Hedin,et al.  REVIEW ARTICLE: On correlation effects in electron spectroscopies and the GW approximation , 1999 .

[122]  E. Carter,et al.  Ab initio explanation of tunneling line shapes for the kondo impurity state. , 2008, Nano letters.

[123]  B. Lundqvist Single-particle spectrum of the degenerate electron gas , 1967 .

[124]  S. Louie,et al.  Electron-hole excitations and optical spectra from first principles , 2000 .

[125]  E Weinan,et al.  Multiscale simulations in simple metals: A density-functional-based methodology , 2004, cond-mat/0404414.

[126]  Philippe Y. Ayala,et al.  Atomic orbital Laplace-transformed second-order Møller–Plesset theory for periodic systems , 2001 .

[127]  G. Ertl,et al.  Direct observation of mobility and interactions of oxygen molecules chemisorbed on the Ag(110) surface , 1997 .

[128]  K. Delaney,et al.  Comment on "band-gap problem in semiconductors revisited: effects of core States and many-body self-consistency". , 2004, Physical review letters.

[129]  N. Winter,et al.  Theoretical study of a Cu+ ion impurity in a NaF host , 1987 .

[130]  D. Bird,et al.  Density-functional embedding using a plane-wave basis , 2000, 0909.5491.

[131]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[132]  Cortona,et al.  Self-consistently determined properties of solids without band-structure calculations. , 1991, Physical review. B, Condensed matter.

[133]  Excited states from time-dependent density functional theory , 2007, cond-mat/0703590.

[134]  C Filippi,et al.  Energy-consistent pseudopotentials for quantum Monte Carlo calculations. , 2007, The Journal of chemical physics.

[135]  L. Reining,et al.  Electronic excitations: density-functional versus many-body Green's-function approaches , 2002 .

[136]  E. Carter,et al.  Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .

[137]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[138]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[139]  Basic density-functional theory - an overview , 2004 .

[140]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[141]  B. Lundqvist,et al.  Exchange and correlation in inhomogeneous electron systems , 1977 .

[142]  Takao Kotani,et al.  Quasiparticle self-consistent GW theory. , 2006, Physical review letters.

[143]  C. Umrigar,et al.  Correlated sampling in quantum Monte Carlo: A route to forces , 1999, cond-mat/9911326.

[144]  Scheffler,et al.  Chemical trends and bonding mechanisms for isloated adsorbates on Al(111). , 1994, Physical review. B, Condensed matter.

[145]  R. Needs,et al.  THE DIFFUSION QUANTUM MONTE CARLO METHOD: DESIGNING TRIAL WAVE FUNCTIONS FOR NiO , 2003 .

[146]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[147]  H. M. Evjen On the Stability of Certain Heteropolar Crystals , 1932 .

[148]  J. Grossman Benchmark quantum Monte Carlo calculations , 2002 .

[149]  B. Lundqvist Single-particle spectrum of the degenerate electron gas , 1967 .

[150]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[151]  L. Reining,et al.  Enhancements to the GW space-time method , 1999, cond-mat/9908372.

[152]  Andreoni,et al.  Ab initio calculations of the quasiparticle and absorption spectra of clusters: The sodium tetramer. , 1995, Physical review letters.

[153]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[154]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[155]  R. Dovesi,et al.  Moderately-large-embedded-cluster approach to the study of local defects in solids. Vacancy and substitutional impurities in graphite , 1979 .

[156]  T. Truong,et al.  Embedded density functional approach for calculations of adsorption on ionic crystals , 1996 .

[157]  T. Wesołowski,et al.  Density functional theory with an approximate kinetic energy functional applied to study structure and stability of weak van der Waals complexes , 1998 .

[158]  Todd J Martínez,et al.  Multicentered valence electron effective potentials: a solution to the link atom problem for ground and excited electronic states. , 2006, The Journal of chemical physics.

[159]  Konstantin M. Neyman,et al.  Cluster embedding in an elastic polarizable environment: Density functional study of Pd atoms adsorbed at oxygen vacancies of MgO(001) , 2001 .

[160]  Joachim Sauer,et al.  Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts , 1989 .

[161]  Emily A. Carter,et al.  Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations , 2007 .