Weighted automata and multi-valued logics over arbitrary bounded lattices

We show that L-weighted automata, L-rational series, and L-valued monadic second order logic have the same expressive power, for any bounded lattice L and for finite and infinite words. We also prove that aperiodicity, star-freeness, and L-valued first-order and LTL-definability coincide. This extends classical results of Kleene, Buchi-Elgot-Trakhtenbrot, and others to arbitrary bounded lattices, without any distributivity assumption that is fundamental in the theory of weighted automata over semirings. In fact, we obtain these results for large classes of strong bimonoids which properly contain all bounded lattices.

[1]  Christian Mathissen Weighted Logics for Nested Words and Algebraic Formal Power Series , 2008, ICALP.

[2]  Mingsheng Ying,et al.  A theory of computation based on quantum logic (I) , 2004, 2005 IEEE International Conference on Granular Computing.

[3]  Karin Quaas Weighted Timed MSO Logics , 2009, Developments in Language Theory.

[4]  Marsha Chechik,et al.  Model-checking infinite state-space systems with fine-grained abstractions using SPIN , 2001, SPIN '01.

[5]  Huaxiong Wang,et al.  On Rational Series and Rational Languages , 1998, Theor. Comput. Sci..

[6]  Krishnendu Chatterjee,et al.  Quantitative Languages , 2008, CSL.

[7]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[8]  Daowen Qiu,et al.  Notes on automata theory based on quantum logic , 2007, Science in China Series F: Information Sciences.

[9]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[10]  Krishnendu Chatterjee,et al.  Expressiveness and Closure Properties for Quantitative Languages , 2009, LICS.

[11]  Manfred Droste,et al.  Weighted finite automata over strong bimonoids , 2010, Inf. Sci..

[12]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[13]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[14]  Paul Gastin,et al.  On Aperiodic and Star-Free Formal Power Series in Partially Commuting Variables , 2007, Theory of Computing Systems.

[15]  Manfred Droste,et al.  Weighted automata and weighted logics with discounting , 2007, Theor. Comput. Sci..

[16]  Manfred Droste,et al.  Kleene and Büchi Theorems for Weighted Automata and Multi-valued Logics over Arbitrary Bounded Lattices , 2010, Developments in Language Theory.

[17]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[18]  Mingsheng Ying,et al.  Automata Theory Based on Quantum Logic II , 2000 .

[19]  Paul Gastin,et al.  First-order definable languages , 2008, Logic and Automata.

[20]  G. Grätzer General Lattice Theory , 1978 .

[21]  Manfred Droste,et al.  Weighted tree automata and weighted logics , 2006, Theor. Comput. Sci..

[22]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[23]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[24]  Ina Fichtner Weighted Picture Automata and Weighted Logics , 2009, Theory of Computing Systems.

[25]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[26]  Daowen Qiu,et al.  Automata theory based on quantum logic: Reversibilities and pushdown automata , 2007, Theor. Comput. Sci..

[27]  Daowen Qiu,et al.  Automata theory based on quantum logic: some characterizations , 2004, Inf. Comput..

[28]  Ajay Mallya,et al.  Deductive Multi-valued Model Checking , 2005, ICLP.

[29]  Manfred Droste,et al.  Weighted Logics for Unranked Tree Automata , 2009, Theory of Computing Systems.

[30]  Andreas Maletti Pure and O-Substitution , 2007, Int. J. Found. Comput. Sci..

[31]  Ingmar Meinecke Weighted Logics for Traces , 2006, CSR.

[32]  Klaus Schneider Verification of Reactive Systems , 2004, Texts in Theoretical Computer Science.

[33]  Marsha Chechik,et al.  Multi-Valued Model Checking via Classical Model Checking , 2003, CONCUR.

[34]  George Rahonis,et al.  Weighted Muller Tree Automata and Weighted Logics , 2007, J. Autom. Lang. Comb..

[35]  Benedikt Bollig,et al.  Weighted Distributed Systems and Their Logics , 2007, LFCS.

[36]  Krishnendu Chatterjee,et al.  Probabilistic Weighted Automata , 2009, CONCUR.

[37]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[38]  Krishnendu Chatterjee,et al.  Alternating Weighted Automata , 2009, FCT.

[39]  Patrice Godefroid,et al.  Model Checking with Multi-valued Logics , 2004, ICALP.

[40]  C. C. Elgot Decision problems of finite automata design and related arithmetics , 1961 .

[41]  André Arnold,et al.  Finite transition systems , 1994 .

[42]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[43]  Benedikt Bollig,et al.  Weighted versus Probabilistic Logics , 2009, Developments in Language Theory.

[44]  Yongming Li,et al.  Finite automata based on quantum logic and monadic second-order quantum logic , 2010, Science in China Series F: Information Sciences.

[45]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[46]  Orna Kupferman,et al.  Lattice Automata , 2007, VMCAI.

[47]  Christian Mathissen Definable Transductions and Weighted Logics for Texts , 2007, Developments in Language Theory.

[48]  Qiu Daowen,et al.  Automata theory based on complete residuated lattice-valued logic , 2001 .

[49]  Manfred Droste,et al.  Determinization of weighted finite automata over strong bimonoids , 2010, Inf. Sci..

[50]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[51]  Manfred Droste,et al.  Multi-Valued MSO Logics OverWords and Trees , 2008, Fundam. Informaticae.