Logical and Semantic Purity
暂无分享,去创建一个
[1] A. Woods. Some problems in logic and number theory and their connections , 1981 .
[2] Victor Pambuccian. Euclidean geometry problems rephrased in terms of midpoints and point-reflections , 2005 .
[3] Jeff B. Paris,et al. Provability of the Pigeonhole Principle and the Existence of Infinitely Many Primes , 1988, J. Symb. Log..
[4] Jean-Pierre Bourguignon,et al. Mathematische Annalen , 1893 .
[5] Oswald Veblen,et al. A system of axioms for geometry , 1904 .
[6] von David Hilbert. Über den Satz von der Gleichheit der Basiswinkel im gleich-schenkligen Dreieck , 1902 .
[7] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[8] O. Hölder. Ueber den Casus Irreducibilis bei der Gleichung dritten Grades , 1891 .
[9] P. Lockhart. INTRODUCTION TO GEOMETRY , 2007 .
[10] Paola D'Aquino. Local Behaviour of the Chebyshev Theorem in Models of I Delta0 , 1992, J. Symb. Log..
[11] A. Pillay. Models of Peano Arithmetic , 1981 .
[12] Michael Hallett. Reflections on the Purity of Method in Hilbert's Grundlagen der Geometrie , 2008 .
[13] A. V. Pogorelov,et al. Lectures on the foundations of geometry , 1967 .
[14] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[15] H. Hahn. Encyklopädie der mathematischen Wissenschaften , 1928 .
[16] Rohit Parikh,et al. Existence and feasibility in arithmetic , 1971, Journal of Symbolic Logic.
[17] Victor Pambuccian. FRAGMENTS OF EUCLIDEAN AND HYPERBOLIC GEOMETRY , 2001 .
[18] Herbert B. Enderton,et al. A mathematical introduction to logic , 1972 .
[19] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[20] Andrew Arana,et al. On Formally Measuring and Eliminating Extraneous Notions in Proofs , 2009 .
[21] S. J. Rigaud. Correspondence of scientific men of the seventeenth century : including letters of Barrow, Flamsteed, Wallis, and Newton, printed from the originals in the collection of the Right Honourable the Earl of Macclesfield , 1841 .
[22] D. Isaacson,et al. Arithmetical truth and hidden higher-order concepts , 1985, Logic Colloquium.
[23] Harvey M. Friedman,et al. A Strong Conservative Extension of Peano Arithmetic , 1980 .
[24] Stephen G. Simpson,et al. Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.
[25] Jeremy Avigad,et al. Number theory and elementary arithmetic , 2003 .