Limit case analysis of the “stable indenter velocity” method for obtaining creep stress exponents from constant load indentation creep tests

[1]  R. Mahmudi,et al.  Effect of Li content on the indentation creep characteristics of cast Mg–Li–Zn alloys , 2015 .

[2]  A. Agarwal,et al.  A comparative study of indentation induced creep in pure magnesium and AZ61 alloy , 2015 .

[3]  J. Zeng,et al.  Effects of Mn addition on the microstructure and indentation creep behavior of the hot dip Zn coating , 2015 .

[4]  D. H. Wen,et al.  Nanoindentation creep behavior in a CoCrFeCuNi high-entropy alloy film with two different structure states , 2015 .

[5]  D. Kaur,et al.  Room temperature nanoindentation creep of nanograined NiTiW shape memory alloy thin films , 2014 .

[6]  T. W. Clyne,et al.  A critical assessment of the “stable indenter velocity” method for obtaining the creep stress exponent from indentation data , 2014 .

[7]  R. Mahmudi,et al.  Indentation creep of a cast Mg–6Al–1Zn–0.7Si alloy , 2014 .

[8]  J. Chakravartty,et al.  Investigations on plastic flow and creep behaviour in nano and ultrafine grain Ni by nanoindentation , 2014 .

[9]  N. Q. Chinh,et al.  Mathematical description of indentation creep and its application for the determination of strain rate sensitivity , 2014 .

[10]  R. Machaka,et al.  Room temperature nanoindentation creep of hot-pressed B6O , 2014 .

[11]  P. Lu,et al.  Creep behaviour of eutectic SnBi alloy and its constituent phases using nanoindentation technique , 2013 .

[12]  T. Clyne,et al.  A procedure for extracting primary and secondary creep parameters from nanoindentation data , 2013 .

[13]  Jili Wu,et al.  On indentation creep of two Cu-based bulk metallic glasses via nanoindentation , 2013 .

[14]  B. Wunderle,et al.  Nanomechanical characterization of Sn–Ag–Cu/Cu joints—Part 2: Nanoindentation creep and its relationship with uniaxial creep as a function of temperature , 2013 .

[15]  R. Mahmudi,et al.  Indentation creep of lead-free Sn–3.5Ag solder alloy: Effects of cooling rate and Zn/Sb addition , 2013 .

[16]  Jae-il Jang,et al.  Estimating the stress exponent of nanocrystalline nickel: Sharp vs. spherical indentation , 2011 .

[17]  T. Clyne,et al.  Use of quasi-static nanoindentation data to obtain stress–strain characteristics for metallic materials , 2010 .

[18]  J. Shen,et al.  Indentation creep of an Fe-based bulk metallic glass , 2009 .

[19]  Jinju Chen,et al.  The investigation of creep of electroplated Sn and Ni–Sn coating on copper at room temperature by nanoindentation , 2009 .

[20]  Hamideh Khanbareh,et al.  Indentation creep of lead-free Sn–9Zn and Sn–8Zn–3Bi solder alloys , 2009 .

[21]  A. Wineman,et al.  Determination of material properties using nanoindentation and multiple indenter tips , 2009 .

[22]  M. Fujiwara,et al.  Analysis on Pseudo-Steady Indentation Creep , 2008 .

[23]  Juyoung Kim,et al.  Derivation of tensile flow characteristics for austenitic materials from instrumented indentation technique , 2008 .

[24]  Shanghai Wei,et al.  Tensile and indentation creep behavior of Mg–5% Sn and Mg–5% Sn–2% Di alloys , 2007 .

[25]  Jian Lu,et al.  Extracting the plastic properties of metal materials from microindentation tests: Experimental comparison of recently published methods , 2007 .

[26]  T. Clyne,et al.  A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature , 2006 .

[27]  M. Fujiwara,et al.  Indentation creep of β-Sn and Sn–Pb eutectic alloy , 2001 .

[28]  Warren C. Oliver,et al.  Indentation power-law creep of high-purity indium , 1999 .

[29]  A. F. Bower,et al.  Indentation of a power law creeping solid , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[30]  V. Raman,et al.  An investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique , 1992 .

[31]  Richard W. Siegel,et al.  Mechanical properties of nanophase TiO_2 as determined by nanoindentation , 1990 .