Rényi Extrapolation of Shannon Entropy

Relations between Shannon entropy and Rényi entropies of integer order are discussed. For any N-point discrete probability distribution for which the Rényi entropies of order two and three are known, we provide a lower and an upper bound for the Shannon entropy. The average of both bounds provide an explicit extrapolation for this quantity. These results imply relations between the von Neumann entropy of a mixed quantum state, its linear entropy and traces.

[1]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Varga,et al.  Universal classification scheme for the spatial-localization properties of one-particle states in finite, d-dimensional systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  A. Wehrl General properties of entropy , 1978 .

[4]  Dagomir Kaszlikowski,et al.  DIRECT DETECTION OF QUANTUM ENTANGLEMENT , 2003 .

[5]  Christoph Arndt,et al.  Information Measures: Information and its Description in Science and Engineering , 2001 .

[6]  Karol Zyczkowski,et al.  Relativity of Pure States Entanglement , 2002 .

[7]  Belgium,et al.  Maximal entanglement versus entropy for mixed quantum states , 2002, quant-ph/0208138.

[8]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[9]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[10]  Jan Havrda,et al.  Quantification method of classification processes. Concept of structural a-entropy , 1967, Kybernetika.

[11]  Barry C. Sanders,et al.  Bounds on Entropy , 2003 .

[12]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[13]  Jagat Narain Kapur,et al.  Measures of information and their applications , 1994 .

[14]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[15]  Pawel Horodecki,et al.  Direct estimation of functionals of density operators by local operations and classical communication , 2003, quant-ph/0304123.

[16]  Flemming Topsøe,et al.  Some inequalities for information divergence and related measures of discrimination , 2000, IEEE Trans. Inf. Theory.

[17]  Peter Harremoës,et al.  Inequalities between entropy and index of coincidence derived from information diagrams , 2001, IEEE Trans. Inf. Theory.

[18]  Zoltán Daróczy,et al.  Generalized Information Functions , 1970, Inf. Control..

[19]  Karol Zyczkowski,et al.  Rényi-Wehrl entropies as measures of localization in phase space , 2001 .

[20]  Andrzej Bialas,et al.  Renyi Entropies in Multiparticle Production , 2000 .

[21]  János Pipek,et al.  Rényi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[23]  P. Horodecki,et al.  Method for direct detection of quantum entanglement. , 2001, Physical review letters.

[24]  A. Białas,et al.  Renyi Entropies in Particle Cascades , 2003 .

[25]  A. Rényi On Measures of Entropy and Information , 1961 .