Identification of a pathway for intelligible speech in the left temporal lobe.

It has been proposed that the identification of sounds, including species-specific vocalizations, by primates depends on anterior projections from the primary auditory cortex, an auditory pathway analogous to the ventral route proposed for the visual identification of objects. We have identified a similar route in the human for understanding intelligible speech. Using PET imaging to identify separable neural subsystems within the human auditory cortex, we used a variety of speech and speech-like stimuli with equivalent acoustic complexity but varying intelligibility. We have demonstrated that the left superior temporal sulcus responds to the presence of phonetic information, but its anterior part only responds if the stimulus is also intelligible. This novel observation demonstrates a left anterior temporal pathway for speech comprehension.

[1]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[2]  J. Flanagan Speech Analysis, Synthesis and Perception , 1971 .

[3]  B Blesser,et al.  Speech perception under conditions of spectral transformation. I. Phonetic characteristics. , 1972, Journal of speech and hearing research.

[4]  N. Geschwind,et al.  Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region , 1978 .

[5]  M. Herrero Botín [Language and communication]. , 1984, Revista de enfermeria.

[6]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[7]  P. Hagoort David Caplan: Neurolinguistics and linguistic aphasiology. An introduction , 1990 .

[8]  D. D. Greenwood A cochlear frequency-position function for several species--29 years later. , 1990, The Journal of the Acoustical Society of America.

[9]  Karl J. Friston,et al.  Distribution of cortical neural networks involved in word comprehension and word retrieval. , 1991, Brain : a journal of neurology.

[10]  Richard S. J. Frackowiak,et al.  The anatomy of phonological and semantic processing in normal subjects. , 1992, Brain : a journal of neurology.

[11]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[12]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[13]  V Ball,et al.  Lip-reading the BKB sentence lists: corrections for list and practice effects. , 1993, British journal of audiology.

[14]  T. Allison,et al.  Word recognition in the human inferior temporal lobe , 1994, Nature.

[15]  Alan C. Evans,et al.  Neural mechanisms underlying melodic perception and memory for pitch , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  R V Shannon,et al.  Speech Recognition with Primarily Temporal Cues , 1995, Science.

[17]  Peter L. Williams,et al.  Gray's Anatomy: The Anatomical Basis of Medicine and Surgery , 1996 .

[18]  T. Hartley,et al.  A Linguistically Constrained Model of Short-Term Memory for Nonwords ☆ , 1996 .

[19]  J. A. Frost,et al.  Function of the left planum temporale in auditory and linguistic processing , 1996, NeuroImage.

[20]  Stephen M. Rao,et al.  Human Brain Language Areas Identified by Functional Magnetic Resonance Imaging , 1997, The Journal of Neuroscience.

[21]  J. Pickett,et al.  The Acoustics of Speech Communication: Fundamentals, Speech Perception Theory, and Technology , 1998 .

[22]  O. Devinsky The Temporal Lobe and Limbic System , 1998 .

[23]  J. Rauschecker Cortical processing of complex sounds , 1998, Current Opinion in Neurobiology.

[24]  Richard S. J. Frackowiak,et al.  Analysis of temporal structure in sound by the human brain , 1998, Nature Neuroscience.

[25]  J Ashburner,et al.  Functional neuroimaging of speech perception in six normal and two aphasic subjects. , 1999, The Journal of the Acoustical Society of America.

[26]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[27]  S. Scott,et al.  Saying it with feeling: neural responses to emotional vocalizations , 1999, Neuropsychologia.

[28]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[29]  C Büchel,et al.  Brain regions involved in articulation , 1999, The Lancet.

[30]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[31]  Kamil Ugurbil,et al.  A functional magnetic resonance imaging study of the role of left posterior superior temporal gyrus in speech production: implications for the explanation of conduction aphasia , 2000, Neuroscience Letters.

[32]  A Faulkner,et al.  Effects of the salience of pitch and periodicity information on the intelligibility of four-channel vocoded speech: implications for cochlear implants. , 2000, The Journal of the Acoustical Society of America.

[33]  B. Mazoyer,et al.  A Common Language Network for Comprehension and Production: A Contribution to the Definition of Language Epicenters with PET , 2000, NeuroImage.

[34]  R. Zatorre,et al.  Functional specificity in the right human auditory cortex for perceiving pitch direction. , 2000, Brain : a journal of neurology.