Existence and bifurcation for some elliptic problems on exterior strip domains

We consider the semilinear elliptic problem − Δ u + u = λ K ( x ) u p + f ( x ) in Ω , u > 0 in Ω , u ∈ H 0 1 ( Ω ) , where λ ≥ 0 , N ≥ 3 , 1 p (N + 2) / (N − 2) , and Ω is an exterior strip domain in ℝ N . Under some suitable conditions on K ( x ) and f ( x ) , we show that there exists a positive constant λ ∗ such that the above semilinear elliptic problem has at least two solutions if λ ∈ ( 0 , λ ∗ ) , a unique positive solution if λ = λ ∗ , and no solution if λ > λ ∗ . We also obtain some bifurcation results of the solutions at λ = λ ∗ .

[1]  Pierre-Louis Lions,et al.  On the existence of a positive solution of semilinear elliptic equations in unbounded domains , 1997 .

[2]  P. Lions,et al.  Morse index of some min-max critical points , 1988 .

[3]  A perturbation result of semilinear elliptic equations in exterior strip domains , 1997 .

[4]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[5]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[6]  Xiping Zhu,et al.  Existence of multiple positive solutions of inhomogeneous semilinear elliptic problems in unbounded domains , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[7]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[8]  M. Esteban Nonlinear elliptic problems in strip-like domains: symmetry of positive vortex rings , 1983 .

[9]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[10]  D. Wrzosek,et al.  Proceedings of the Royal Society of Edinburgh , 1940, Nature.

[11]  I. Ekeland Nonconvex minimization problems , 1979 .

[12]  Multiple solutions for semilinear elliptic equations in unbounded cylinder domains , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[14]  Xiping Zhu A perturbation result on positive entire solutions of a semilinear elliptic equation , 1991 .

[15]  H. Amann Fixed Point Equations and Nonlinear Eigenvalue Problems in Ordered Banach Spaces , 1976 .

[16]  Existence of solutions of semilinear elliptic problems on unbounded domains , 1993 .

[17]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[18]  Tiancheng Ouyang,et al.  Exact multiplicity results for boundary value problems with nonlinearities generalising cubic , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.