The state of the field: from inception to commercialization of metal-organic frameworks.

As chemists and materials scientists, it is our duty to synthesize and utilize materials for a multitude of applications that promote the development of society and the well-being of its citizens. Since the inception of metal-organic frameworks (MOFs), researchers have proposed a variety of design strategies to rationally synthesize new MOF materials, studied their porosity and gas sorption performances, and integrated MOFs onto supports and into devices. Efforts have explored the relevance of MOFs for applications including, but not limited to, heterogeneous catalysis, guest delivery, water capture, destruction of nerve agents, gas storage, and separation. Recently, several start-up companies have undertaken MOF commercialization within industrial sectors. Herein, we provide a brief overview of the state of the MOF field from their design and synthesis to their potential applications, and finally, to their commercialization.

[1]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: semiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[2]  J. Hupp,et al.  Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorus Nerve Agents. , 2020, ACS applied materials & interfaces.

[3]  M. Eddaoudi,et al.  A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption. , 2016, Journal of the American Chemical Society.

[4]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[5]  Jie Yang,et al.  Metal-Organic Frameworks for Biomedical Applications. , 2020, Small.

[6]  M. Dincǎ,et al.  Cation exchange at the secondary building units of metal-organic frameworks. , 2014, Chemical Society reviews.

[7]  R. Snurr,et al.  Highly selective carbon dioxide uptake by [Cu(bpy-n)2(SiF6)] (bpy-1 = 4,4'-bipyridine; bpy-2 = 1,2-bis(4-pyridyl)ethene). , 2012, Journal of the American Chemical Society.

[8]  G. Wiederrecht,et al.  Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[9]  Dan Zhao,et al.  Tuning the topology and functionality of metal-organic frameworks by ligand design. , 2011, Accounts of chemical research.

[10]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[11]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[12]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[13]  J. Flege,et al.  The cubic-to-hexagonal phase transition of cerium oxide particles: dynamics and structure. , 2017, Nanoscale.

[14]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[15]  T. Faust,et al.  MOFs move to market. , 2016, Nature chemistry.

[16]  T. Yildirim,et al.  A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. , 2014, Journal of the American Chemical Society.

[17]  Omar K. Farha,et al.  Zirconium Metal–Organic Frameworks for Organic Pollutant Adsorption , 2019, Trends in Chemistry.

[18]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[19]  S. Kitagawa,et al.  Three‐Dimensional Framework with Channeling Cavities for Small Molecules: {[M2(4, 4′‐bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn) , 1997 .

[20]  J. Hupp,et al.  Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites , 2017 .

[21]  J. H. Rayner,et al.  Clathrate Compound Formed by Benzene with an Ammonia–Nickel Cyanide Complex , 1949, Nature.

[22]  Hong‐Cai Zhou,et al.  The preparation of an ultrastable mesoporous Cr(iii)-MOF via reductive labilization† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02587g , 2015, Chemical science.

[23]  Shengqian Ma,et al.  How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. , 2012, Journal of the American Chemical Society.

[24]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[25]  Zhijie Chen,et al.  Reticular Chemistry 3.2: Typical Minimal Edge-Transitive Derived and Related Nets for the Design and Synthesis of Metal-Organic Frameworks. , 2020, Chemical reviews.

[26]  M. Zaworotko,et al.  A dynamic and multi-responsive porous flexible metal–organic material , 2018, Nature Communications.

[27]  S. Alvarez Polyhedra in (inorganic) chemistry. , 2005, Dalton transactions.

[28]  Robert Raja,et al.  Single-site heterogeneous catalysts. , 2005, Angewandte Chemie.

[29]  C. Serre,et al.  Synthesis of the biocompatible and highly stable MIL-127(Fe): from large scale synthesis to particle size control , 2016 .

[30]  Danielle A. Salvatore,et al.  CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine , 2019, Nature Communications.

[31]  R. Banerjee,et al.  Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. , 2014, Chemistry.

[32]  Michael O'Keeffe,et al.  Taxonomy of periodic nets and the design of materials. , 2007, Physical chemistry chemical physics : PCCP.

[33]  Shuai Yuan,et al.  Stepwise Synthesis of Metal-Organic Frameworks. , 2017, Accounts of chemical research.

[34]  L. Barbour,et al.  Distinctive Three-Step Hysteretic Sorption of Ethane with In Situ Crystallographic Visualization of the Pore Forms in a Soft Porous Crystal. , 2017, Journal of the American Chemical Society.

[35]  M. Eddaoudi,et al.  The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. , 2011, Journal of the American Chemical Society.

[36]  O. Yaghi,et al.  Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. , 2020, Chem.

[37]  Gérard Férey,et al.  Flexible porous metal-organic frameworks for a controlled drug delivery. , 2008, Journal of the American Chemical Society.

[38]  Hong-Cai Zhou,et al.  Zr-based metal-organic frameworks: design, synthesis, structure, and applications. , 2016, Chemical Society reviews.

[39]  K. Užarević,et al.  Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks , 2020, CrystEngComm.

[40]  R. Sougrat,et al.  Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials , 2018, Science.

[41]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[42]  Mohamed Eddaoudi,et al.  Assembly of metal-organic frameworks (MOFs) based on indium-trimer building blocks: a porous MOF with soc topology and high hydrogen storage. , 2007, Angewandte Chemie.

[43]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[44]  H. Titi,et al.  Mechanochemistry for Synthesis. , 2019, Angewandte Chemie.

[45]  Tongbu Lu,et al.  Incorporating Heavy Alkanes in Metal-Organic Frameworks for Optimizing Adsorbed Natural Gas Capacity. , 2018, Chemistry.

[46]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[47]  O. Yaghi,et al.  Metal–Organic Frameworks for Water Harvesting from Air , 2018, Advanced materials.

[48]  Dan Zhao,et al.  An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. , 2010, Angewandte Chemie.

[49]  Angelo Albini,et al.  Photocatalysis. A multi-faceted concept for green chemistry. , 2009, Chemical Society reviews.

[50]  J. Maddox Crystals from first principles , 1988, Nature.

[51]  Philipp Müller,et al.  A new metal-organic framework with ultra-high surface area. , 2014, Chemical communications.

[52]  Alexander C. Forse,et al.  Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks , 2020, Science.

[53]  J. Lee,et al.  Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. , 2017, Nature materials.

[54]  Wei‐Xiong Zhang,et al.  Efficient purification of ethene by an ethane-trapping metal-organic framework , 2015, Nature Communications.

[55]  C. Petit,et al.  The use of metal–organic frameworks for CO purification , 2018 .

[56]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[57]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[58]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[59]  Duilio Cascio,et al.  Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. , 2012, Inorganic chemistry.

[60]  S. Kaskel,et al.  Ultrahigh porosity in mesoporous MOFs: promises and limitations. , 2014, Chemical communications.

[61]  Hong‐Cai Zhou,et al.  Topology-guided design and syntheses of highly stable mesoporous porphyrinic zirconium metal-organic frameworks with high surface area. , 2015, Journal of the American Chemical Society.

[62]  R. Krishna,et al.  Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions , 2012, Nature Communications.

[63]  K. Mirica,et al.  Conductive two-dimensional metal-organic frameworks as multifunctional materials. , 2018, Chemical communications.

[64]  Christian Serre,et al.  High valence 3p and transition metal based MOFs. , 2014, Chemical Society reviews.

[65]  Mohamed Eddaoudi,et al.  Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution , 2019, Nature Chemistry.

[66]  Zu-Jin Lin,et al.  Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. , 2014, Chemical Society reviews.

[67]  Martin P Attfield,et al.  Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy. , 2008, Angewandte Chemie.

[68]  M. Eddaoudi,et al.  Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study , 2020 .

[69]  A. Emwas,et al.  MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage , 2015, Journal of the American Chemical Society.

[70]  Jihye Park,et al.  Dual Exchange in PCN-333: A Facile Strategy to Chemically Robust Mesoporous Chromium Metal-Organic Framework with Functional Groups. , 2015, Journal of the American Chemical Society.

[71]  Xiangyang Zhu,et al.  Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. , 2014, Chemical communications.

[72]  Dan Zhao,et al.  Solvent-Induced Control over Breathing Behavior in Flexible Metal-Organic Frameworks for Natural-Gas Delivery. , 2019, Angewandte Chemie.

[73]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[74]  Amy J. Cairns,et al.  Synthesis and integration of Fe-soc-MOF cubes into colloidosomes via a single-step emulsion-based approach. , 2013, Journal of the American Chemical Society.

[75]  Michael Grätzel,et al.  Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO , 2017, Nature Energy.

[76]  Jeffrey S. Camp,et al.  Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019 , 2019, Journal of Chemical & Engineering Data.

[77]  E. Andreoli,et al.  Post-Synthetic Ligand Exchange in Zirconium-Based Metal-Organic Frameworks: Beware of The Defects! , 2018, Angewandte Chemie.

[78]  Jie Su,et al.  Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation , 2015, Nature Communications.

[79]  K. Dunbar,et al.  Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives , 2007 .

[80]  J. Hupp,et al.  MOF functionalization via solvent-assisted ligand incorporation: phosphonates vs carboxylates. , 2015, Inorganic chemistry.

[81]  C. Serre,et al.  Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. , 2007, Chemical communications.

[82]  Ha L. Nguyen The chemistry of titanium-based metal–organic frameworks , 2017 .

[83]  Ashlee J. Howarth,et al.  Green applications of metal–organic frameworks , 2018 .

[84]  J. F. Stoddart,et al.  Ligand-Directed Reticular Synthesis of Catalytically Active Missing Zirconium-Based Metal-Organic Frameworks. , 2019, Journal of the American Chemical Society.

[85]  Christina T. Lollar,et al.  Enzyme-MOF (metal-organic framework) composites. , 2017, Chemical Society reviews.

[86]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[87]  W. Colella,et al.  Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles , 2005, Science.

[88]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[89]  Diego A. Gómez-Gualdrón,et al.  Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[90]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[91]  Bo Wang,et al.  Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites , 2009, Proceedings of the National Academy of Sciences.

[92]  A. Star,et al.  Luminescence "Turn-On" Detection of Gossypol using Ln3+-Based Metal-Organic Frameworks and Ln Salts. , 2020, Journal of the American Chemical Society.

[93]  S. Kitagawa,et al.  Highly Porous and Stable Coordination Polymers as Water Sorption Materials , 2010 .

[94]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .

[95]  H. Fjellvåg,et al.  An in situ high-temperature single-crystal investigation of a dehydrated metal-organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. , 2005, Angewandte Chemie.

[96]  S. Kitagawa,et al.  Highly responsive nature of porous coordination polymer surfaces imaged by in situ atomic force microscopy , 2018, Nature Chemistry.

[97]  K. Lillerud,et al.  Pitfalls in metal-organic framework crystallography: towards more accurate crystal structures. , 2017, Chemical Society reviews.

[98]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[99]  Mohamed Eddaoudi,et al.  Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron. , 2008, Journal of the American Chemical Society.

[100]  Evelyn N. Wang,et al.  Water harvesting from air with metal-organic frameworks powered by natural sunlight , 2017, Science.

[101]  R. Krishna,et al.  Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures , 2016 .

[102]  Hai‐Long Jiang,et al.  Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications , 2019, Chem.

[103]  Riki J. Drout,et al.  Isothermal Titration Calorimetry to Explore the Parameter Space of Organophosphorus Agrochemical Adsorption in MOFs. , 2020, Journal of the American Chemical Society.

[104]  Yan Liu,et al.  Controlled Exchange of Achiral Linkers with Chiral Linkers in Zr-Based UiO-68 Metal-Organic Framework. , 2018, Journal of the American Chemical Society.

[105]  X. Bu,et al.  A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations. , 2013, Angewandte Chemie.

[106]  J. Hupp,et al.  Metal-organic framework (MOF) materials as polymerization catalysts: a review and recent advances. , 2020, Chemical communications.

[107]  M. Allendorf,et al.  Electronic Devices Using Open Framework Materials. , 2020, Chemical reviews.

[108]  P. Taylor,et al.  Interaction of an organophosphate with a peripheral site on acetylcholinesterase. , 1990, Biochemistry.

[109]  M. Eddaoudi,et al.  Network diversity through decoration of trigonal-prismatic nodes: two-step crystal engineering of cationic metal-organic materials. , 2011, Angewandte Chemie.

[110]  Dennis T. Lee,et al.  Protective Fabrics: Metal-Organic Framework Textiles for Rapid Photocatalytic Sulfur Mustard Simulant Detoxification , 2020 .

[111]  C. Pinel,et al.  Metal-organic frameworks: opportunities for catalysis. , 2009, Angewandte Chemie.

[112]  Nathaniel L. Rosi,et al.  Orthogonal Ternary Functionalization of a Mesoporous Metal-Organic Framework via Sequential Postsynthetic Ligand Exchange. , 2015, Journal of the American Chemical Society.

[113]  H. García,et al.  Iron(III) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide , 2012 .

[114]  F. Fathieh,et al.  Practical water production from desert air , 2018, Science Advances.

[115]  R. M. Barrer Separations using zeolitic materials , 1949 .

[116]  Prodromos Daoutidis,et al.  Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV , 2017, Science.

[117]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[118]  Adam J. Rieth,et al.  Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture , 2019, Nature Reviews Materials.

[119]  Shengqian Ma,et al.  Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. , 2011, Journal of the American Chemical Society.

[120]  Mohamed Eddaoudi,et al.  Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water , 2018 .

[121]  R. Krishna,et al.  Flexible-Robust Metal-Organic Framework for Efficient Removal of Propyne from Propylene. , 2017, Journal of the American Chemical Society.

[122]  Ying-Wei Yang,et al.  Metal–Organic Framework (MOF)‐Based Drug/Cargo Delivery and Cancer Therapy , 2017, Advanced materials.

[123]  J. Hupp,et al.  Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks. , 2014, Angewandte Chemie.

[124]  R. Krishna,et al.  Ultrahigh and Selective SO2 Uptake in Inorganic Anion‐Pillared Hybrid Porous Materials , 2017, Advanced materials.

[125]  Xiao Feng,et al.  Preparation of Nanofibrous Metal-Organic Framework Filters for Efficient Air Pollution Control. , 2016, Journal of the American Chemical Society.

[126]  C. Serre,et al.  A phase transformable ultrastable titanium-carboxylate framework for photoconduction , 2018, Nature Communications.

[127]  F. Fathieh,et al.  Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester , 2019, ACS central science.

[128]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[129]  P. Feng,et al.  New heterometallic zirconium metalloporphyrin frameworks and their heteroatom-activated high-surface-area carbon derivatives. , 2015, Journal of the American Chemical Society.

[130]  Tony Pham,et al.  Readily accessible shape-memory effect in a porous interpenetrated coordination network , 2018, Science Advances.

[131]  D. Muller,et al.  Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices , 2019, Science.

[132]  Pengfei Yang,et al.  Water-based routes for synthesis of metal-organic frameworks: A review , 2020, Science China Materials.

[133]  H. Furukawa,et al.  High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. , 2016, Journal of the American Chemical Society.

[134]  K. A. Hofmann,et al.  Verbindungen von Kohlenwasserstoffen mit Metallsalzen , 1897 .

[135]  Douglas M. Franz,et al.  Trace CO2 capture by an ultramicroporous physisorbent with low water affinity , 2019, Science Advances.

[136]  K. Poeppelmeier,et al.  Orientational order of [VOF 5 ] 2- and [NbOF 5 ] 2- polar units in chains , 2012 .

[137]  Junjie Zhao,et al.  Ultra-Fast Degradation of Chemical Warfare Agents Using MOF-Nanofiber Kebabs. , 2016, Angewandte Chemie.

[138]  Qiang Zhang,et al.  A single crystalline porphyrinic titanium metal–organic framework† †Electronic supplementary information (ESI) available. CCDC [1036868]. For ESI and crystallographic data in CIF or other electronic format. See DOI: 10.1039/c5sc00916b Click here for additional data file. Click here for additional da , 2015, Chemical science.

[139]  O. Yaghi,et al.  Reticular Chemistry and Metal-Organic Frameworks for Clean Energy , 2009 .

[140]  Pei‐Qin Liao,et al.  Controlling flexibility of metal–organic frameworks , 2018 .

[141]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[142]  Craig M. Brown,et al.  Methane storage in flexible metal–organic frameworks with intrinsic thermal management , 2015, Nature.

[143]  Amy J. Cairns,et al.  Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. , 2013, Journal of the American Chemical Society.

[144]  O. Farha,et al.  Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs , 2019, Coordination Chemistry Reviews.

[145]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[146]  Zhenqiang Wang,et al.  Postsynthetic covalent modification of a neutral metal-organic framework. , 2007, Journal of the American Chemical Society.

[147]  O. Yaghi,et al.  Spiers Memorial Lecture:. Progress and prospects of reticular chemistry. , 2017, Faraday discussions.

[148]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[149]  Michael R. Wasielewski,et al.  Photoinduced electron transfer in supramolecular systems for artificial photosynthesis , 1992 .

[150]  Amy J. Cairns,et al.  Two-step crystal engineering of porous nets from [Cr3(μ3-O)(RCO2)6] and [Cu3(μ3-Cl)(RNH2)6Cl6] molecular building blocks. , 2013, Chemical communications.

[151]  Omar K Farha,et al.  Supercritical processing as a route to high internal surface areas and permanent microporosity in metal-organic framework materials. , 2009, Journal of the American Chemical Society.

[152]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[153]  Daqiang Yuan,et al.  The current status of hydrogen storage in metal–organic frameworks—updated , 2011 .

[154]  Weijiang Zhou,et al.  Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. , 2019, Matter.

[155]  Craig M. Brown,et al.  Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni2(m-dobdc) at Near-Ambient Temperatures. , 2018, Chemistry of materials : a publication of the American Chemical Society.

[156]  Dong‐Pyo Kim,et al.  Pore-Surface Engineering by Decorating Metal-Oxo Nodes with Phenylsilane to Give Versatile Super-Hydrophobic Metal-Organic Frameworks (MOFs). , 2019, Angewandte Chemie.

[157]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[158]  J. Hupp,et al.  Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange , 2013 .

[159]  Rajamani Krishna,et al.  Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene , 2016, Science.

[160]  Binbin Ding,et al.  Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy. , 2019, ACS applied materials & interfaces.

[161]  Jacek Klinowski,et al.  Ligand design for functional metal-organic frameworks. , 2012, Chemical Society Reviews.

[162]  S. Deng,et al.  Optimizing Pore Space for Flexible-Robust Metal-Organic Framework to Boost Trace Acetylene Removal. , 2020, Journal of the American Chemical Society.

[163]  P. Heitjans,et al.  Defibrillation of soft porous metal-organic frameworks with electric fields , 2017, Science.

[164]  Chunying Duan,et al.  Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis , 2016 .

[165]  K. Sada,et al.  Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework. , 2013, Journal of the American Chemical Society.

[166]  Shengqian Ma,et al.  Size-selective biocatalysis of myoglobin immobilized into a mesoporous metal-organic framework with hierarchical pore sizes. , 2012, Inorganic chemistry.

[168]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[169]  G. Palmisano,et al.  Tuning the adsorption properties of isoreticular pyrazolate-based metal-organic frameworks through ligand modification. , 2012, Journal of the American Chemical Society.

[170]  S. Kitagawa,et al.  Synthesis of the novel infinite-sheet and -chain copper(I) complex polymers {[Cu(C4H4N2)3/2(CH3CN)](PF)6).cntdot.0.5C3H6O}.infin. and {[Cu2(C8H12N2)3](ClO4)2}.infin. and their x-ray crystal structures , 1992 .

[171]  S. Krause,et al.  A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. , 2012, Chemical communications.

[172]  Jun Liang,et al.  Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. , 2017, Chemical Society reviews.

[173]  Diego A. Gómez-Gualdrón,et al.  Bottom-up construction of a superstructure in a porous uranium-organic crystal , 2017, Science.

[174]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[175]  Hong‐Cai Zhou,et al.  A versatile synthetic route for the preparation of titanium metal–organic frameworks† †Electronic supplementary information (ESI) available: Full details of sample preparation, characterizations and photocatalysis experiments. See DOI: 10.1039/c5sc03620h , 2015, Chemical science.

[176]  Jared B. DeCoste,et al.  High-Throughput Screening of MOFs for Breakdown of V-Series Nerve Agents. , 2020, ACS applied materials & interfaces.

[177]  R. Forgan,et al.  Postsynthetic Modification of Zirconium Metal‐Organic Frameworks , 2016 .

[178]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[179]  R. Robson,et al.  Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments , 1989 .

[180]  Krista S. Walton,et al.  Water stability and adsorption in metal-organic frameworks. , 2014, Chemical reviews.

[181]  Kwangjin An,et al.  Catalytic CO Oxidation over Au Nanoparticles Supported on CeO2 Nanocrystals: Effect of the Au–CeO2 Interface , 2018, ACS Catalysis.

[182]  Abdullah M. Asiri,et al.  Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. , 2016, Angewandte Chemie.

[183]  C. Serre,et al.  A robust amino-functionalized titanium(iv) based MOF for improved separation of acid gases. , 2013, Chemical communications.

[184]  K. Reuter,et al.  Postsynthetic Metal and Ligand Exchange in MFU-4l: A Screening Approach toward Functional Metal-Organic Frameworks Comprising Single-Site Active Centers. , 2015, Chemistry.

[185]  D. Schwarzenbach,et al.  Single-crystal study of Prussian Blue: Fe4[Fe(CN)6]2, 14H2O , 1972 .

[186]  O. Farha,et al.  Metal-Organic Frameworks against Toxic Chemicals. , 2020, Chemical reviews.

[187]  Reizo Kato,et al.  Crystal and electronic structures of conductive anion-radical salts, (2,5-R1R2-DCNQI)2Cu (DCNQI = N,N'-dicyanoquinonediimine; R1, R2 = CH3, CH3O, Cl, Br) , 1989 .

[188]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society Reviews.

[189]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[190]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[191]  Maciej Haranczyk,et al.  An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage , 2018 .

[192]  M. Beller,et al.  Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts , 2018, ACS Catalysis.

[193]  T. Bein,et al.  Single layer growth of sub-micron metal-organic framework crystals observed by in situ atomic force microscopy. , 2009, Chemical communications.

[194]  R. Robson,et al.  Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and Cu , 1990 .

[195]  S. Chong,et al.  A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core. , 2010, Journal of the American Chemical Society.

[196]  Gregory S. Day,et al.  The thermally induced decarboxylation mechanism of a mixed-oxidation state carboxylate-based iron metal-organic framework. , 2019, Chemical communications.

[197]  Allison M. Rice,et al.  Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape , 2019, ACS Energy Letters.

[198]  J. F. Stoddart,et al.  Encapsulation of Ibuprofen in CD-MOF and Related Bioavailability Studies. , 2017, Molecular pharmaceutics.

[199]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[200]  J. F. Stoddart,et al.  Reticular Access to Highly Porous acs-MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. , 2019, Journal of the American Chemical Society.

[201]  David Fairen-Jimenez,et al.  Vapor-phase metalation by atomic layer deposition in a metal-organic framework. , 2013, Journal of the American Chemical Society.

[202]  Susumu Kitagawa,et al.  Future Porous Materials. , 2017, Accounts of chemical research.

[203]  M. O'keeffe,et al.  Applying the Power of Reticular Chemistry to Finding the Missing alb-MOF Platform Based on the (6,12)-Coordinated Edge-Transitive Net. , 2017, Journal of the American Chemical Society.

[204]  P. Ekins,et al.  The role of hydrogen and fuel cells in the global energy system , 2019, Energy & Environmental Science.

[205]  O. Farha,et al.  A historical overview of the activation and porosity of metal-organic frameworks. , 2020, Chemical Society reviews.

[206]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[207]  C. Serre,et al.  A biocompatible porous Mg-gallate metal-organic framework as an antioxidant carrier. , 2015, Chemical communications.

[208]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[209]  Shu Seki,et al.  Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metal-organic framework with infinite (-Mn-S-)∞ chains and high intrinsic charge mobility. , 2013, Journal of the American Chemical Society.

[210]  F. Kapteijn,et al.  Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges , 2014 .

[211]  Ashlee J Howarth,et al.  Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. , 2017, Chemical Society reviews.

[212]  Adam J. Rieth,et al.  Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal–organic frameworks† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00112j , 2018, Chemical science.

[213]  A. Emwas,et al.  Enhanced Separation of Butane Isomers via Defect Control in a Fumarate/Zirconium-Based Metal Organic Framework. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[214]  M. O'keeffe,et al.  Minimal edge-transitive nets for the design and construction of metal-organic frameworks. , 2017, Faraday discussions.

[215]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[216]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[217]  Alauddin Ahmed,et al.  Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks , 2019, Nature Communications.

[218]  O. Yaghi,et al.  A Metal-Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte. , 2019, Journal of the American Chemical Society.

[219]  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[220]  S. Kaskel,et al.  Balancing Mechanical Stability and Ultrahigh Porosity in Crystalline Framework Materials. , 2018, Angewandte Chemie.

[221]  Gongpin Liu,et al.  Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity , 2018, Nature Energy.

[222]  Yongchul G. Chung,et al.  Elucidation of flexible metal-organic frameworks: Research progresses and recent developments , 2019, Coordination Chemistry Reviews.

[223]  Shuang-Yi Wan,et al.  Recent advances in post-synthetic modification of metal–organic frameworks: New types and tandem reactions , 2017, Coordination Chemistry Reviews.

[224]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[225]  Tatsuo C. Kobayashi,et al.  Kinetic gate-opening process in a flexible porous coordination polymer. , 2008, Angewandte Chemie.

[226]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[227]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[228]  Cheng Wang,et al.  Metal–Organic Frameworks for Light Harvesting and Photocatalysis , 2012 .

[229]  M. Tu,et al.  Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces , 2019, Nature Communications.

[230]  D. MacMillan,et al.  Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. , 2013, Chemical reviews.

[231]  Cory M. Simon,et al.  Kinetically tuned dimensional augmentation as a versatile synthetic route towards robust metal–organic frameworks , 2014, Nature Communications.

[232]  O. Farha,et al.  Mechanical properties of metal–organic frameworks , 2019, Chemical science.

[233]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[234]  B. Li,et al.  Porous Metal-Organic Frameworks: Promising Materials for Methane Storage , 2016 .

[235]  Avelino Corma,et al.  State of the art and future challenges of zeolites as catalysts , 2003 .

[236]  J. Hupp,et al.  Selective Solvent-Assisted Linker Exchange (SALE) in a Series of Zeolitic Imidazolate Frameworks. , 2015, Inorganic chemistry.

[237]  Chaohui He,et al.  Molecular sieving of ethylene from ethane using a rigid metal–organic framework , 2018, Nature Materials.

[238]  Wenbin Lin,et al.  Metal-organic frameworks for artificial photosynthesis and photocatalysis. , 2014, Chemical Society reviews.

[239]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: regular and quasiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[240]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[241]  B. Abrahams,et al.  Assembly of porphyrin building blocks into network structures with large channels , 1994, Nature.

[242]  F. Kapteijn,et al.  Metal–organic and covalent organic frameworks as single-site catalysts , 2017, Chemical Society reviews.

[243]  O. Farha,et al.  Metal–organic frameworks: A tunable platform to access single-site heterogeneous catalysts , 2019, Applied Catalysis A: General.

[244]  Omar K. Farha,et al.  Transmetalation: routes to metal exchange within metal–organic frameworks , 2013 .

[245]  C. Wöll,et al.  Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. , 2017, Chemical Society reviews.

[246]  Gérard Férey,et al.  A new photoactive crystalline highly porous titanium(IV) dicarboxylate. , 2009, Journal of the American Chemical Society.

[247]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[248]  Michel Dupuis,et al.  Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. , 2013, Chemical reviews.

[249]  J. Long,et al.  Controlling Cooperative CO2 Adsorption in Diamine-Appended Mg2(dobpdc) Metal-Organic Frameworks. , 2017, Journal of the American Chemical Society.

[250]  Hong‐Cai Zhou,et al.  Stepwise synthesis of robust metal-organic frameworks via postsynthetic metathesis and oxidation of metal nodes in a single-crystal to single-crystal transformation. , 2014, Journal of the American Chemical Society.

[251]  Zoha H. Syed,et al.  Integration of Metal-Organic Frameworks on Protective Layers for Destruction of Nerve Agents under Relevant Conditions. , 2019, Journal of the American Chemical Society.

[252]  Kyungsu Na,et al.  Superacidity in sulfated metal-organic framework-808. , 2014, Journal of the American Chemical Society.

[253]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[254]  P. Yang,et al.  Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. , 2015, Journal of the American Chemical Society.

[255]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[256]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[257]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[258]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[259]  Kibong Kim,et al.  Destruction and detection of chemical warfare agents. , 2011, Chemical reviews.

[260]  M. O'keeffe,et al.  Cu2[o-Br-C6H3(CO2)2]2(H2O)2·(DMF)8(H2O)2: A Framework Deliberately Designed To Have the NbO Structure Type , 2002 .

[261]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[262]  A. Krasheninnikov,et al.  Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks , 2020, Nature Communications.

[263]  J. Hupp,et al.  Chemical, thermal and mechanical stabilities of metal–organic frameworks , 2016 .

[264]  T. Yildirim,et al.  Optimization of the Pore Structures of MOFs for Record High Hydrogen Volumetric Working Capacity , 2020, Advanced materials.

[265]  Gérard Férey,et al.  Building Units Design and Scale Chemistry , 2000 .

[266]  J. Hupp,et al.  Beyond the Active Site: Tuning the Activity and Selectivity of a Metal-Organic Framework-Supported Ni Catalyst for Ethylene Dimerization. , 2018, Journal of the American Chemical Society.

[267]  Dawei Feng,et al.  Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. , 2012, Angewandte Chemie.

[268]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[269]  M. Nolan,et al.  The surface dependence of CO adsorption on Ceria. , 2006, The journal of physical chemistry. B.

[270]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[271]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[272]  Gerhard Klebe,et al.  A Radical Anion Salt of 2,5‐Dimethyl‐N,N′‐dicyanoquinonediimine with Extremely High Electrical Conductivity , 1986 .

[273]  Zhigang Xie,et al.  Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. , 2011, Journal of the American Chemical Society.

[274]  Hyunuk Kim,et al.  Metathesis in single crystal: complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[275]  Ying Shirley Meng,et al.  Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. , 2014, Journal of the American Chemical Society.

[276]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[277]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[278]  Pengpeng Shao,et al.  A Hydrolytically Stable V(IV)-Metal-Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. , 2019, Angewandte Chemie.

[279]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[280]  Omar K Farha,et al.  Rational design, synthesis, purification, and activation of metal-organic framework materials. , 2010, Accounts of chemical research.

[281]  Hong‐Cai Zhou,et al.  Coupling two enzymes into a tandem nanoreactor utilizing a hierarchically structured MOF† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc01438k Click here for additional data file. , 2016, Chemical science.

[282]  S. Wuttke,et al.  Pore Chemistry of Metal–Organic Frameworks , 2020, Advanced Functional Materials.

[283]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[284]  Y. Kawazoe,et al.  Highly controlled acetylene accommodation in a metal–organic microporous material , 2005, Nature.

[285]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[286]  O. Yaghi,et al.  Secondary building units as the turning point in the development of the reticular chemistry of MOFs , 2018, Science Advances.

[287]  Adam J. Rieth,et al.  Record Atmospheric Fresh Water Capture and Heat Transfer with a Material Operating at the Water Uptake Reversibility Limit , 2017, ACS central science.

[288]  Yao Zheng,et al.  Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. , 2015, Chemical Society reviews.

[289]  Ashlee J Howarth,et al.  Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. , 2017, Accounts of chemical research.

[290]  O. Yaghi,et al.  Brønsted acidity in metal-organic frameworks. , 2015, Chemical reviews.

[291]  Hua Zhang,et al.  Hybrid micro-/nano-structures derived from metal-organic frameworks: preparation and applications in energy storage and conversion. , 2017, Chemical Society reviews.

[292]  G. Ertl,et al.  Handbook of Heterogeneous Catalysis , 1997 .

[293]  Stefan Kaskel,et al.  Characterization of metal-organic frameworks by water adsorption , 2009 .

[294]  Guangming Li,et al.  Selective binding and removal of guests in a microporous metal–organic framework , 1995, Nature.

[295]  Zhigang Xie,et al.  Freeze drying significantly increases permanent porosity and hydrogen uptake in 4,4-connected metal-organic frameworks. , 2009, Angewandte Chemie.

[296]  Michael J. Zaworotko,et al.  Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. , 2008, Journal of the American Chemical Society.

[297]  Aaron J. Sathrum,et al.  Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. , 2009, Chemical Society reviews.

[298]  L. Martin,et al.  Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films , 2020, Science.

[299]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[300]  L. Daemen,et al.  Quest for an optimal methane hydrates formation in the pores of hydrolytically stable MOFs. , 2020, Journal of the American Chemical Society.

[301]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[302]  C. Stern,et al.  Examining the out-of-center distortion in the [NbOF5]2- anion. , 2005, Inorganic chemistry.

[303]  Yahui Yang,et al.  Designing Open Metal Sites in Metal-Organic Frameworks for Paraffin/Olefin Separations. , 2019, Journal of the American Chemical Society.

[304]  R. Hartmann,et al.  Crystalline Sponges as a Sensitive and Fast Method for Metabolite Identification: Application to Gemfibrozil and its Phase I and II Metabolites , 2020, Drug Metabolism and Disposition.

[305]  Kyriakos C. Stylianou,et al.  Dimensionality transformation through paddlewheel reconfiguration in a flexible and porous Zn-based metal-organic framework. , 2012, Journal of the American Chemical Society.

[306]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[307]  O. Farha,et al.  Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal–organic frameworks for toxic chemical removal , 2019, CrystEngComm.

[308]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[309]  B. Martín‐Matute,et al.  Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. , 2019, Journal of the American Chemical Society.

[310]  M. O'keeffe,et al.  Infinite secondary building units and forbidden catenation in metal-organic frameworks. , 2002, Angewandte Chemie.

[311]  François-Xavier Coudert,et al.  Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends , 2015 .

[312]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[313]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[314]  K. Lillerud,et al.  Functionalizing the Defects: Postsynthetic Ligand Exchange in the Metal Organic Framework UiO-66 , 2016 .

[315]  Liang Feng,et al.  Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation , 2019, Matter.

[316]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: edge-transitive binodal structures. , 2006, Acta crystallographica. Section A, Foundations of crystallography.

[317]  Angel T. Garcia-Esparza,et al.  Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. , 2018, Journal of the American Chemical Society.

[318]  N. López,et al.  Solvent-dependent cation exchange in metal-organic frameworks. , 2014, Chemistry.

[319]  David J. Mandia,et al.  Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation , 2019, ACS Catalysis.

[320]  H. Furukawa,et al.  "Heterogeneity within order" in metal-organic frameworks. , 2015, Angewandte Chemie.

[321]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[322]  Bin Zheng,et al.  Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. , 2017, Nature materials.

[323]  Michele Aresta,et al.  Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. , 2014, Chemical reviews.

[324]  Wanbin Li,et al.  Vapor-phase linker exchange of metal-organic frameworks , 2020, Science Advances.

[325]  Yongjin Lee,et al.  Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal-Organic Frameworks. , 2017, Journal of the American Chemical Society.

[326]  Diego A. Gómez-Gualdrón,et al.  Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory. , 2015, Journal of the American Chemical Society.

[327]  Ranjan V. Mannige,et al.  Heterogeneity of functional groups in a metal–organic framework displays magic number ratios , 2015, Proceedings of the National Academy of Sciences.

[328]  Seth M. Cohen,et al.  Metalation of a thiocatechol-functionalized Zr(IV)-based metal-organic framework for selective C-H functionalization. , 2015, Journal of the American Chemical Society.

[329]  Cheng Wang,et al.  Metal–Organic Frameworks in Solid–Gas Phase Catalysis , 2018, ACS Catalysis.

[330]  M. Wasielewski,et al.  Enzyme encapsulation in metal–organic frameworks for applications in catalysis , 2017 .

[331]  O. Yaghi,et al.  Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. , 2011, Inorganic chemistry.

[332]  C. Serre,et al.  A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework , 2014 .

[333]  Seth M. Cohen The Postsynthetic Renaissance in Porous Solids. , 2017, Journal of the American Chemical Society.

[334]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[335]  François-Xavier Coudert,et al.  Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. , 2008, Journal of the American Chemical Society.

[336]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[337]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[338]  Michael J. Katz,et al.  Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants. , 2014, Angewandte Chemie.

[339]  M. Eddaoudi,et al.  A metal-organic framework–based splitter for separating propylene from propane , 2016, Science.

[340]  Omar M. Yaghi,et al.  A Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and Covalent-Organic Frameworks. , 2016, Journal of the American Chemical Society.

[341]  Lin-Wang Wang,et al.  Coverage Break-Up of Stepped Platinum Catalyst Surfaces by High CO , 2014 .

[342]  Emmanuel Tylianakis,et al.  Perfluoroalkane functionalization of NU-1000 via solvent-assisted ligand incorporation: synthesis and CO2 adsorption studies. , 2013, Journal of the American Chemical Society.

[343]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[344]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[345]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[346]  O. Yaghi,et al.  MOF water harvesters , 2020, Nature Nanotechnology.

[347]  Riki J. Drout,et al.  Designing Porous Materials to Resist Compression: Mechanical Reinforcement of a Zr-MOF with Structural Linkers , 2020 .

[348]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[349]  Kari Rissanen,et al.  X-ray analysis on the nanogram to microgram scale using porous complexes , 2013, Nature.

[350]  Michelle L. Beauvais,et al.  Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal-Organic Framework. , 2019, Journal of the American Chemical Society.

[351]  M. O'keeffe,et al.  Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive related Nets: Access to Highly-coordinated MOFs based on Double Six-membered Rings as net-coded Building Units. , 2019, Journal of the American Chemical Society.

[352]  S. Krause,et al.  Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery. , 2015, Chemical communications.

[353]  Christophe Copéret,et al.  Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. , 2016, Chemical reviews.

[354]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[355]  Xiao Feng,et al.  Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. , 2015, Angewandte Chemie.

[356]  J. Hupp,et al.  Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal-Organic Frameworks: Selective Alcohol Oxidation and Structure-Activity Relationship. , 2018, Journal of the American Chemical Society.

[357]  M. Hill,et al.  Programmed pore architectures in modular quaternary metal-organic frameworks. , 2013, Journal of the American Chemical Society.

[358]  Justin M. Notestein,et al.  Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes , 2020, ACS Catalysis.

[359]  Diego A. Gómez-Gualdrón,et al.  Benchmark Study of Hydrogen Storage in Metal-Organic Frameworks under Temperature and Pressure Swing Conditions , 2018 .

[360]  Zhenjie Zhang,et al.  Incorporation of biomolecules in Metal-Organic Frameworks for advanced applications , 2019, Coordination Chemistry Reviews.

[361]  Wenbin Lin,et al.  Metal-organic frameworks as potential drug carriers. , 2010, Current opinion in chemical biology.

[362]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[363]  Adam J. Rieth,et al.  Controlled Gas Uptake in Metal-Organic Frameworks with Record Ammonia Sorption. , 2018, Journal of the American Chemical Society.

[364]  O. Farha,et al.  Solvent-assisted linker exchange enabled preparation of cerium-based metal–organic frameworks constructed from redox active linkers , 2020, Inorganic Chemistry Frontiers.

[365]  C. Serre,et al.  Metal-Organic Frameworks as Efficient Oral Detoxifying Agents. , 2018, Journal of the American Chemical Society.

[366]  M. O'keeffe,et al.  Infinite secondary building units and forbidden catenation in metal-organic frameworks. , 2002, Angewandte Chemie.

[367]  Omar M Yaghi,et al.  Water adsorption in porous metal-organic frameworks and related materials. , 2014, Journal of the American Chemical Society.

[368]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .

[369]  F. Hawthorne,et al.  Crystals from first principles , 1990, Nature.

[370]  B. Abrahams,et al.  A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks , 1991 .

[371]  M. Fujita,et al.  Networked molecular cages as crystalline sponges for fullerenes and other guests. , 2010, Nature chemistry.

[372]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[373]  Diego A. Gómez-Gualdrón,et al.  Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks. , 2017, ACS applied materials & interfaces.

[374]  S. Okajima,et al.  Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. , 2015, Journal of the American Chemical Society.

[375]  M. Zaworotko,et al.  Water Vapor Sorption in Hybrid Pillared Square Grid Materials. , 2017, Journal of the American Chemical Society.

[376]  O. Shekhah,et al.  Step-by-step route for the synthesis of metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[377]  Diego A. Gómez-Gualdrón,et al.  Hierarchically Engineered Mesoporous Metal-Organic Frameworks toward Cell-free Immobilized Enzyme Systems , 2018 .

[378]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[379]  J. Lee,et al.  A robust large-pore zirconium carboxylate metal–organic framework for energy-efficient water-sorption-driven refrigeration , 2018, Nature Energy.

[380]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[381]  Tao Zhang,et al.  Single-atom catalysts: a new frontier in heterogeneous catalysis. , 2013, Accounts of chemical research.

[382]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[383]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[384]  J. Xin,et al.  Scalable and Template-Free Aqueous Synthesis of Zirconium-Based Metal-Organic Framework Coating on Textile Fiber. , 2019, Journal of the American Chemical Society.

[385]  Zhijie Chen,et al.  A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO2 capture and hydrocarbon separation , 2015 .

[386]  M. Zaworotko,et al.  Structural Elucidation of the Mechanism of Molecular Recognition in Chiral Crystalline Sponges , 2020, Angewandte Chemie.

[387]  Omar M Yaghi,et al.  Isoreticular metalation of metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[388]  B. Li,et al.  Microporous metal-organic frameworks for gas separation. , 2014, Chemistry, an Asian journal.

[389]  Hao Li,et al.  Recent advances in gas storage and separation using metal–organic frameworks , 2018 .

[390]  M. O'keeffe,et al.  Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal-Organic Framework Platforms. , 2018, Journal of the American Chemical Society.

[391]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[392]  R. Clérac,et al.  Fine-tuning the ring-size of metallacyclophanes: a rational approach to molecular pentagons. , 2001, Journal of the American Chemical Society.

[393]  J. Xin,et al.  Facile and Scalable Coating of Metal-Organic Frameworks on Fibrous Substrates by a Coordination Replication Method at Room Temperature. , 2019, ACS applied materials & interfaces.

[394]  N. Park,et al.  Postsynthetic Exchanges of the Pillaring Ligand in Three-Dimensional Metal–Organic Frameworks , 2013 .

[395]  T. Wigmans,et al.  Industrial aspects of production and use of activated carbons , 1989 .

[396]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[397]  R. Zare,et al.  One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. , 2014, Nano letters.

[398]  Amy J. Cairns,et al.  Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S , 2017 .

[399]  Lide Zhang,et al.  Facile fabrication of magnetic metal–organic framework nanocomposites for potential targeted drug delivery , 2011 .

[400]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[401]  C. Hu,et al.  Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers. , 2011, Journal of the American Chemical Society.

[402]  Riki J. Drout,et al.  Isothermal Titration Calorimetry to Investigate Uremic Toxins Adsorbing onto Metal-Organic Frameworks , 2020 .

[403]  S. Krause,et al.  Chemistry of Soft Porous Crystals - Structural Dynamics and Gas Adsorption Properties. , 2020, Angewandte Chemie.

[404]  David Farrusseng,et al.  Water adsorption in MOFs: fundamentals and applications. , 2014, Chemical Society reviews.

[405]  Rajasekhar Balasubramanian,et al.  Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies , 2013, Environmental Science and Pollution Research.

[406]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[407]  C. Su,et al.  Dynamic Spacer Installation for Multirole Metal-Organic Frameworks: A New Direction toward Multifunctional MOFs Achieving Ultrahigh Methane Storage Working Capacity. , 2017, Journal of the American Chemical Society.

[408]  O. Shekhah,et al.  Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy. , 2009, Nature materials.

[409]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[410]  Omar K Farha,et al.  Instantaneous hydrolysis of nerve-agent simulants with a six-connected zirconium-based metal-organic framework. , 2015, Angewandte Chemie.

[411]  Riki J. Drout,et al.  Catalytic applications of enzymes encapsulated in metal–organic frameworks , 2019, Coordination Chemistry Reviews.

[412]  Donald J. Siegel,et al.  Balancing gravimetric and volumetric hydrogen density in MOFs , 2017 .

[413]  Mayur B. Kurade,et al.  Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments , 2019, Coordination Chemistry Reviews.

[414]  M. O'keeffe,et al.  Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. , 2008, Journal of the American Chemical Society.

[415]  Emmanuel Tylianakis,et al.  Reticular Synthesis of HKUST-like tbo-MOFs with Enhanced CH4 Storage. , 2016, Journal of the American Chemical Society.

[416]  Peng Li,et al.  Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. , 2018, Journal of the American Chemical Society.

[417]  Ayalew H. Assen,et al.  Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. , 2017, Chemical Society reviews.

[418]  Xian‐Zheng Zhang,et al.  A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy. , 2015, Nanoscale.

[419]  M. Hirscher,et al.  Selective Hydrogen Isotope Separation via Breathing Transition in MIL-53(Al). , 2017, Journal of the American Chemical Society.

[420]  H. Furukawa,et al.  High Methane Storage Capacity in Aluminum Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[421]  Rachel B. Getman,et al.  Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. , 2012, Chemical reviews.

[422]  O. Yaghi,et al.  Sequencing of metals in multivariate metal-organic frameworks , 2020, Science.

[423]  O. Yaghi,et al.  Metal-organic frameworks with high capacity and selectivity for harmful gases , 2008, Proceedings of the National Academy of Sciences.

[424]  M. Kanatzidis,et al.  Design of Solids from Molecular Building Blocks: Golden Opportunities for Solid State Chemistry , 2000 .

[425]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[426]  S. Sakaki,et al.  Design and control of gas diffusion process in a nanoporous soft crystal , 2019, Science.

[427]  Amy J. Cairns,et al.  Discovery and introduction of a (3,18)-connected net as an ideal blueprint for the design of metal–organic frameworks , 2014, Nature Chemistry.

[428]  O. Farha,et al.  A Flexible Metal-Organic Framework with 4-Connected Zr6 Nodes. , 2018, Journal of the American Chemical Society.

[429]  Nathaniel L. Rosi,et al.  Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. , 2013, Journal of the American Chemical Society.

[430]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[431]  Y. Horiuchi,et al.  Understanding TiO2 photocatalysis: mechanisms and materials. , 2014, Chemical reviews.

[432]  I. Matsubara,et al.  The Crystal Structure of Bis(succinonitrilo)copper(I) Nitrate , 1959 .

[433]  J. F. Stoddart,et al.  Reticular exploration of uranium-based metal—organic frameworks with hexacarboxylate building units , 2020, Nano Research.

[434]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[435]  S. Kitagawa,et al.  Functional Hybrid Porous Coordination Polymers , 2014 .

[436]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[437]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.