Novel photocatalytic applications of sub-nanometer gold particles for environmental liquid and gas phase reactions

[1]  M. Flytzani-Stephanopoulos,et al.  CO Oxidation on Unsupported Dendrimer-Encapsulated Gold Nanoparticles , 2010 .

[2]  G. Bond Source of the catalytic activity of gold nanoparticles , 2010 .

[3]  G. Hutchings Nanocrystalline gold catalysts: A reflection on catalyst discovery and the nature of active sites , 2009 .

[4]  A. A. Lisachenko,et al.  FTIR and TPD Analysis of Surface Species on a TiO2 Photocatalyst Exposed to NO, CO, and NO-CO Mixtures: Effect of UV-Vis Light Irradiation , 2009 .

[5]  M. Flytzani-Stephanopoulos,et al.  Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. , 2009, Journal of Electron Microscopy.

[6]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[7]  G. Pantaleo,et al.  Nano-structured gold catalysts supported on CeO2 and CeO2-Al2O3 for NOx reduction by CO: effect of catalyst pretreatment and feed composition. , 2008, Journal of nanoscience and nanotechnology.

[8]  B. Gates,et al.  Role of cationic gold in supported CO oxidation catalysts , 2007 .

[9]  H. Sakurai,et al.  Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol , 2006 .

[10]  Lai‐Sheng Wang,et al.  Facile syntheses of monodisperse ultrasmall Au clusters. , 2006, The journal of physical chemistry. B.

[11]  Tatsuya Tsukuda,et al.  Chiroptical activity of BINAP-stabilized undecagold clusters. , 2006, The journal of physical chemistry. B.

[12]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[13]  G. Hearne,et al.  The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2: Drifts studies , 2005 .

[14]  H. Fujihara,et al.  Preparation and characterization of gold nanoparticles with a ruthenium-terpyridyl complex, and electropolymerization of their pyrrole-modified metal nanocomposites , 2005 .

[15]  G. Hearne,et al.  Direct observation of thermally activated NO adsorbate species on AuTiO2: DRIFTS studies , 2004 .

[16]  C. Petit,et al.  A new preparation method for the formation of gold nanoparticles on an oxide support , 2004 .

[17]  E. Wolf,et al.  Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. , 2004, Journal of the American Chemical Society.

[18]  R. M. Lambert,et al.  Photocatalytic Properties of TiO2 Modified with Gold Nanoparticles in the Degradation of 4-Chlorophenol in Aqueous Solution , 2004 .

[19]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[20]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[21]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[22]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[23]  C. Peden,et al.  Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110) , 2003 .

[24]  P. Kamat,et al.  Influence of Metal/Metal Ion Concentration on the Photocatalytic Activity of TiO2−Au Composite Nanoparticles , 2003 .

[25]  Shaowei Chen,et al.  Surface Manipulation of the Electronic Energy of Subnanometer-Sized Gold Clusters: An Electrochemical and Spectroscopic Investigation , 2003 .

[26]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[27]  Masatake Haruta,et al.  Catalysis of Gold Nanoparticles Deposited on Metal Oxides , 2002 .

[28]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[29]  P. Biswas,et al.  The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity , 2001 .

[30]  P. Kamat,et al.  Semiconductor−Metal Nanocomposites. Photoinduced Fusion and Photocatalysis of Gold-Capped TiO2 (TiO2/Gold) Nanoparticles , 2001 .

[31]  W. Jahn Review: chemical aspects of the use of gold clusters in structural biology. , 1999, Journal of structural biology.

[32]  V. Grassian,et al.  Transmission FT-IR and Knudsen Cell Study of the Heterogeneous Reactivity of Gaseous Nitrogen Dioxide on Mineral Oxide Particles , 1999 .

[33]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[34]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[35]  L. Prati,et al.  Gold on Carbon as a New Catalyst for Selective Liquid Phase Oxidation of Diols , 1998 .

[36]  J. Teles,et al.  Cationic Gold(I) Complexes: Highly Efficient Catalysts for the Addition of Alcohols to Alkynes. , 1998, Angewandte Chemie.

[37]  A. Maldotti,et al.  Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions : Effect of the solvent and of oxygen , 1998 .

[38]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[39]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[40]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[41]  D. Safer,et al.  Undecagold clusters for site-specific labeling of biological macromolecules: simplified preparation and model applications. , 1986, Journal of inorganic biochemistry.

[42]  D. Mingos,et al.  Homo‐ and Heteronuclear Cluster Compounds of Gold , 2007 .

[43]  D. Mingos,et al.  Structural studies on mixed iron–gold clusters with bidentate tertiary phosphine ligands , 1983 .

[44]  F. A. Vollenbroek,et al.  Gold clusters containing bidentate phosphine ligands. Preparation and X‐Ray structure investigation of [Au5(dppmH)3(dppm)](NO3)2 and [Au13(dppmH)6](NO3)n , 1981 .