Fundamentals of Communication Systems

113 line 10 x2(t) x5(t) 113 line 11 x3(t) x6(t) 113 line 12 x4(t) x7(t) 113 line 13 x5(t) x8(t) 113 line 14 x6(t) x9(t) 113 line 15 x7(t) x10(t) 113 line 16 x8(t) x11(t) 113 line 17 x9(t) x12(t) 113 line 6 x(t) x1(t) 113 line 7 x(t) x2(t) 113 line 8 x(t) x3(t) 113 line 9 x1(t) x4(t) 204 Eq. 4.6.1 0 ≤ t ≤ Tm 2 0 ≤ t < Tm 2 232 Fig. 5.13 x(t : ω1), x(t : ω2), x(t : ω3) x(t; ω1), x(t; ω2), x(t; ω3) 233 Fig. 5.14 same corrections as for Figure 5.13 given above 236 Definition 5.2.4 Replace the definition with: Two random processes X(t) andY (t) are independent if for all positive integersm, n and for allt1, t2, . . . , tn andτ1, τ2, . . . , τm, the random vectors (X(t1), X(t2), . . . , X(tn)) and (Y (τ1), Y (τ2), . . . , Y (τm)) are independent. Similarly X(t) andY (t) areuncorrelated if the two random vectors are uncorrelated.