Dexterous manipulation and control with volumetric muscles

We propose a framework for simulation and control of the human musculoskeletal system, capable of reproducing realistic animations of dexterous activities with high-level coordination. We present the first controllable system in this class that incorporates volumetric muscle actuators, tightly coupled with the motion controller, in enhancement of line-segment approximations that prior art is overwhelmingly restricted to. The theoretical framework put forth by our methodology computes all the necessary Jacobians for control, even with the drastically increased dimensionality of the state descriptors associated with three-dimensional, volumetric muscles. The direct coupling of volumetric actuators in the controller allows us to model muscular deficiencies that manifest in shape and geometry, in ways that cannot be captured with line-segment approximations. Our controller is coupled with a trajectory optimization framework, and its efficacy is demonstrated in complex motion tasks such as juggling, and weightlifting sequences with variable anatomic parameters and interaction constraints.

[1]  Mark Pauly,et al.  Phace: physics-based face modeling and animation , 2017, ACM Trans. Graph..

[2]  J. Lloyd,et al.  Predicting muscle patterns for hemimandibulectomy models , 2010, Computer methods in biomechanics and biomedical engineering.

[3]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[4]  Derek Bradley,et al.  Enriching Facial Blendshape Rigs with Physical Simulation , 2017, Comput. Graph. Forum.

[5]  Eftychios Sifakis,et al.  Simulation of complex nonlinear elastic bodies using lattice deformers , 2012, ACM Trans. Graph..

[6]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[7]  Lifeng Zhu,et al.  Adaptable Anatomical Models for Realistic Bone Motion Reconstruction , 2015, Comput. Graph. Forum.

[8]  Jungdam Won,et al.  How to train your dragon , 2017, ACM Trans. Graph..

[9]  François Faure,et al.  Multifarious hierarchies of mechanical models for artist assigned levels-of-detail , 2015, Symposium on Computer Animation.

[10]  Eftychios Sifakis,et al.  Non-manifold level sets , 2015, ACM Trans. Graph..

[11]  C. Karen Liu,et al.  Soft body locomotion , 2012, ACM Trans. Graph..

[12]  Markus H. Gross,et al.  Deformable objects alive! , 2012, ACM Trans. Graph..

[13]  Baining Guo,et al.  Simulation and control of skeleton-driven soft body characters , 2013, ACM Trans. Graph..

[14]  D. Thelen Adjustment of muscle mechanics model parameters to simulate dynamic contractions in older adults. , 2003, Journal of biomechanical engineering.

[15]  Ladislav Kavan,et al.  Computational bodybuilding , 2015, ACM Trans. Graph..

[16]  H. Ralston Energetics of Human Walking , 1976 .

[17]  Jaroslav Krivánek,et al.  Reconstructing personalized anatomical models for physics-based body animation , 2016, ACM Trans. Graph..

[18]  Sidney Fels,et al.  ArtiSynth: A Fast Interactive Biomechanical Modeling Toolkit Combining Multibody and Finite Element Simulation , 2012 .

[19]  Eftychios Sifakis,et al.  Realistic Biomechanical Simulation and Control of Human Swimming , 2014, ACM Trans. Graph..

[20]  Vladlen Koltun,et al.  Optimizing locomotion controllers using biologically-based actuators and objectives , 2012, ACM Trans. Graph..

[21]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, ACM Trans. Graph..

[22]  Ronald Fedkiw,et al.  Finite volume methods for the simulation of skeletal muscle , 2003, SCA '03.

[23]  Michael J. Black,et al.  Dyna: a model of dynamic human shape in motion , 2015, ACM Trans. Graph..

[24]  Christian Duriez,et al.  SOFA: A Multi-Model Framework for Interactive Physical Simulation , 2012 .

[25]  Michael Damsgaard,et al.  Analysis of musculoskeletal systems in the AnyBody Modeling System , 2006, Simul. Model. Pract. Theory.

[26]  Meekyoung Kim,et al.  Data-driven physics for human soft tissue animation , 2017, ACM Trans. Graph..

[27]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[28]  Glen Berseth,et al.  DeepLoco , 2017, ACM Trans. Graph..

[29]  Ronald Fedkiw,et al.  Creating and simulating skeletal muscle from the visible human data set , 2005, IEEE Transactions on Visualization and Computer Graphics.

[30]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[31]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[32]  Ayman Habib,et al.  OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement , 2007, IEEE Transactions on Biomedical Engineering.

[33]  Carol O'Sullivan,et al.  Push-recovery stability of biped locomotion , 2015, ACM Trans. Graph..

[34]  Ana Lucia Cruz Ruiz,et al.  Muscle‐Based Control for Character Animation , 2017, Comput. Graph. Forum.

[35]  Eftychios Sifakis,et al.  Comprehensive biomechanical modeling and simulation of the upper body , 2009, TOGS.

[36]  Ronald Fedkiw,et al.  Robust quasistatic finite elements and flesh simulation , 2005, SCA '05.

[37]  Taesoo Kwon,et al.  Locomotion control for many-muscle humanoids , 2014, ACM Trans. Graph..

[38]  Michiel van de Panne,et al.  Flexible muscle-based locomotion for bipedal creatures , 2013, ACM Trans. Graph..

[39]  Eftychios Sifakis,et al.  GRIDiron: an interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures , 2015, ACM Trans. Graph..

[40]  Siddhartha S. Srinivasa,et al.  DART: Dynamic Animation and Robotics Toolkit , 2018, J. Open Source Softw..

[41]  Katsu Yamane,et al.  Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics , 2016, Computational Visual Media.

[42]  Demetri Terzopoulos,et al.  Heads up!: biomechanical modeling and neuromuscular control of the neck , 2006, SIGGRAPH 2006.

[43]  Mikhail Fain,et al.  Biomechanical simulation and control of hands and tendinous systems , 2015, ACM Trans. Graph..

[44]  Burkard Polster The Mathematics of Juggling by Burkard Polster , 2009 .

[45]  Raphaël Dumas,et al.  Modeling of the Thigh , 2017 .

[46]  Z. Popovic,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[47]  C. Karen Liu,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) Synthesis of Interactive Hand Manipulation , 2022 .

[48]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[49]  Dinesh K. Pai,et al.  Active volumetric musculoskeletal systems , 2014, ACM Trans. Graph..

[50]  Hongyi Xu,et al.  Pose-space subspace dynamics , 2016, ACM Trans. Graph..

[51]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, SIGGRAPH 2008.