Topological target patterns and population oscillations in a network with random gap junctional coupling

Abstract Recent evidence suggests that electrical coupling could play a role in generating oscillatory behavior in networks of neurons, however, exact mechanisms have not been identified. Using a cellular automata model, we recently showed that a self-organizing process can generate regular population oscillations in a network with random spontaneous activity and random gap junction-like coupling. The network activity underlying the oscillations is topologically similar to target-pattern activity. Here, we show the process at work in a biophysical model. We demonstrate that population oscillations can also arise from reentrant behavior, but these oscillations look qualitatively different than those generated by the target-pattern-like activity.