Frontier residues lining globin internal cavities present specific mechanical properties.

The internal cavity matrix of globins plays a key role in their biological function. Previous studies have already highlighted the plasticity of this inner network, which can fluctuate with the proteins breathing motion, and the importance of a few key residues for the regulation of ligand diffusion within the protein. In this Article, we combine all-atom molecular dynamics and coarse-grain Brownian dynamics to establish a complete mechanical landscape for six different globins chain (myoglobin, neuroglobin, cytoglobin, truncated hemoglobin, and chains α and β of hemoglobin). We show that the rigidity profiles of these proteins can fluctuate along time, and how a limited set of residues present specific mechanical properties that are related to their position at the frontier between internal cavities. Eventually, we postulate the existence of conserved positions within the globin fold, which form a mechanical nucleus located at the center of the cavity network, and whose constituent residues are essential for controlling ligand migration in globins.

[1]  M Bolognesi,et al.  Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme , 2001, The EMBO journal.

[2]  R. Elber Ligand diffusion in globins: simulations versus experiment. , 2010, Current opinion in structural biology.

[3]  J. Soman,et al.  Ligand pathways in myoglobin: A review of trp cavity mutations , 2007, IUBMB life.

[4]  F. Spyrakis,et al.  Ligand migration through the internal hydrophobic cavities in human neuroglobin , 2009, Proceedings of the National Academy of Sciences.

[5]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[6]  Sophie Sacquin-Mora,et al.  Relating the diffusion of small ligands in human neuroglobin to its structural and mechanical properties. , 2009, The journal of physical chemistry. B.

[7]  R. Hardison,et al.  A brief history of hemoglobins: plant, animal, protist, and bacteria. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  L. Kiger,et al.  Structure and function evolution in the superfamily of globins. , 2009, Comptes rendus biologies.

[9]  A. Pesce,et al.  Crystal structure of cytoglobin: the fourth globin type discovered in man displays heme hexa-coordination. , 2004, Journal of molecular biology.

[10]  P Argos,et al.  Intramolecular cavities in globular proteins. , 1994, Protein engineering.

[11]  A. Pesce,et al.  Mapping protein matrix cavities in human cytoglobin through Xe atom binding. , 2004, Biochemical and biophysical research communications.

[12]  I. Kuntz,et al.  Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A. , 1984, Biochemistry.

[13]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[14]  M. Brunori,et al.  The structure of murine neuroglobin: Novel pathways for ligand migration and binding , 2004, Proteins.

[15]  Sophie Sacquin-Mora,et al.  Protein mechanics: a route from structure to function , 2007, Journal of Biosciences.

[16]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[17]  J. Fontecilla-Camps,et al.  Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. , 2010, Nature chemical biology.

[18]  F. J. Luque,et al.  Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis. , 2007, Journal of the American Chemical Society.

[19]  J. Straub,et al.  Molecular Dynamics Simulation of No Recombination to Myoglobin Mutants , 1993 .

[20]  R. Elber,et al.  Toward quantitative simulations of carbon monoxide escape pathways in myoglobin. , 2008, The journal of physical chemistry. B.

[21]  O. Ptitsyn,et al.  Non-functional conserved residues in globins and their possible role as a folding nucleus. , 1999, Journal of molecular biology.

[22]  Sophie Sacquin-Mora,et al.  Investigating the local flexibility of functional residues in hemoproteins. , 2006, Biophysical journal.

[23]  A. Miele,et al.  Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[25]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[26]  H. Sugimoto,et al.  High-resolution structure of human cytoglobin: identification of extra N- and C-termini and a new dimerization mode. , 2006, Acta crystallographica. Section D, Biological crystallography.

[27]  Martin Karplus,et al.  Brownian dynamics simulation of a lipid chain in a membrane bilayer , 1988 .

[28]  G Ulrich Nienhaus,et al.  Searching for Neuroglobin's role in the brain , 2007, IUBMB life.

[29]  Monique Laberge,et al.  Common dynamics of globin family proteins , 2007, IUBMB life.

[30]  F. J. Luque,et al.  Theoretical study of the truncated hemoglobin HbN: exploring the molecular basis of the NO detoxification mechanism. , 2005, Journal of the American Chemical Society.

[31]  Julian Echave,et al.  Exploring the common dynamics of homologous proteins. Application to the globin family. , 2005, Biophysical journal.

[32]  Patricia Amara,et al.  Structure–function relationships of anaerobic gas-processing metalloenzymes , 2009, Nature.

[33]  Alessandra Pesce,et al.  Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. , 2003, Structure.

[34]  K. Schulten,et al.  Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin. , 2006, Biophysical journal.

[35]  T. Burmester,et al.  What is the function of neuroglobin? , 2009, Journal of Experimental Biology.

[36]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[37]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[38]  F. J. Luque,et al.  Ligand‐induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin‐N , 2006, Proteins.

[39]  A. Amadei,et al.  Kinetics of carbon monoxide migration and binding in solvated neuroglobin as revealed by molecular dynamics simulations and quantum mechanical calculations. , 2009, The journal of physical chemistry. B.

[40]  P Argos,et al.  Accessibility to internal cavities and ligand binding sites monitored by protein crystallographic thermal factors , 1998, Proteins.

[41]  Andrea Amadei,et al.  Extended molecular dynamics simulation of the carbon monoxide migration in sperm whale myoglobin. , 2004, Biophysical journal.

[42]  J. Gough,et al.  A phylogenomic profile of globins , 2006, BMC Evolutionary Biology.

[43]  G. Brayer,et al.  High-resolution study of the three-dimensional structure of horse heart metmyoglobin. , 1990, Journal of molecular biology.

[44]  M. Brunori,et al.  Molecular dynamics simulation of sperm whale myoglobin: effects of mutations and trapped CO on the structure and dynamics of cavities. , 2005, Biophysical journal.

[45]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[46]  G. Nienhaus,et al.  Structural identification of spectroscopic substates in neuroglobin. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[47]  M. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. , 1984, Journal of molecular biology.

[48]  Kenneth A Johnson,et al.  Pattern of cavities in globins: The case of human hemoglobin , 2009, Biopolymers.

[49]  L. Mouawad,et al.  Internal cavities and ligand passageways in human hemoglobin characterized by molecular dynamics simulations. , 2005, Biochimica et biophysica acta.

[50]  M. Hargrove,et al.  Structure and reactivity of hexacoordinate hemoglobins. , 2010, Biophysical chemistry.

[51]  Paolo Ruggerone,et al.  CO escape from myoglobin with metadynamics simulations , 2007, Proteins.

[52]  H. Frauenfelder Myoglobin as an example of protein complexity , 2010 .

[53]  L. Moens,et al.  Diversity of Globin Function: Enzymatic, Transport, Storage, and Sensing* , 2008, Journal of Biological Chemistry.

[54]  M. Brunori,et al.  Cavities and packing defects in the structural dynamics of myoglobin , 2001, EMBO reports.

[55]  M. Brunori,et al.  Molecular dynamics simulation of deoxy and carboxy murine neuroglobin in water. , 2007, Biophysical journal.

[56]  J. Echave,et al.  Evolutionary Conservation of Protein Backbone Flexibility , 2006, Journal of Molecular Evolution.

[57]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[58]  M Hendlich,et al.  LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins. , 1997, Journal of molecular graphics & modelling.

[59]  Shigehiko Hayashi,et al.  A search for ligand diffusion pathway in myoglobin using a metadynamics simulation , 2008 .

[60]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[61]  J. Friedman,et al.  The Position 68(E11) Side Chain in Myoglobin Regulates Ligand Capture, Bond Formation with Heme Iron, and Internal Movement into the Xenon Cavities* , 2005, Journal of Biological Chemistry.

[62]  M. Brunori,et al.  The structure of carbonmonoxy neuroglobin reveals a heme-sliding mechanism for control of ligand affinity. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Markus Meuwly,et al.  Nitric oxide dynamics in truncated hemoglobin: docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations. , 2009, Biophysical journal.

[64]  S. Adachi,et al.  ‘It's hollow’: the function of pores within myoglobin , 2010, Journal of Experimental Biology.

[65]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[66]  M. Karplus,et al.  Dynamics of ligand binding to heme proteins. , 1979, Journal of molecular biology.

[67]  J Andrew McCammon,et al.  Multiple pathways guide oxygen diffusion into flavoenzyme active sites , 2009, Proceedings of the National Academy of Sciences.

[68]  A. Mozzarelli,et al.  Hemoglobin, an "evergreen" red protein. , 2009, Biochimica et biophysica acta.

[69]  K. Mizuguchi,et al.  A model of globin evolution. , 2007, Gene.

[70]  S. Takahashi,et al.  Ligand migration in human myoglobin: steric effects of isoleucine 107(G8) on O(2) and CO binding. , 2001, Biophysical journal.

[71]  W. Taylor,et al.  Exploring the factors determining the dynamics of different protein folds , 2011, Protein Science.

[72]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[73]  Aleksandr V. Smirnov,et al.  Watching a Protein as it Functions with 150-ps Time-Resolved X-ray Crystallography , 2003, Science.

[74]  G. Nienhaus,et al.  Ligand migration between internal docking sites in photodissociated carbonmonoxy neuroglobin. , 2009, The journal of physical chemistry. B.

[75]  Martin Zacharias,et al.  Protein–protein docking with a reduced protein model accounting for side‐chain flexibility , 2003, Protein science : a publication of the Protein Society.

[76]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[77]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[78]  Wieslaw Nowak,et al.  Topology and thermodynamics of gaseous ligands diffusion paths in human neuroglobin , 2008, Biosyst..

[79]  P. Ruggerone,et al.  Breathing motions of a respiratory protein revealed by molecular dynamics simulations. , 2009, Journal of the American Chemical Society.

[80]  F. J. Luque,et al.  Role of Pre-A Motif in Nitric Oxide Scavenging by Truncated Hemoglobin, HbN, of Mycobacterium tuberculosis* , 2009, Journal of Biological Chemistry.

[81]  Michael L. Quillin,et al.  Structural and functional effects of apolar mutations of the distal valine in myoglobin. , 1995, Journal of molecular biology.

[82]  Klaus Schulten,et al.  O2 migration pathways are not conserved across proteins of a similar fold. , 2007, Biophysical journal.

[83]  Sophie Sacquin-Mora,et al.  Locating the active sites of enzymes using mechanical properties , 2007, Proteins.