Closer to the solution : Iterative linear solversGene
暂无分享,去创建一个
H. | A. van der | GolubStanford | UniversityHenk | VorstUtrecht | A. V. der
[1] H. V. D. Vorst,et al. The rate of convergence of Conjugate Gradients , 1986 .
[2] O. Nevanlinna,et al. Accelerating with rank-one updates , 1989 .
[3] T. Manteuffel. The Tchebychev iteration for nonsymmetric linear systems , 1977 .
[4] Vijay Sonnad,et al. A comparison of direct and preconditioned iterative techniques for sparse, unsymmetric systems of linear equations , 1989 .
[5] Gene H. Golub,et al. Some History of the Conjugate Gradient and Lanczos Algorithms: 1948-1976 , 1989, SIAM Rev..
[6] Roland W. Freund,et al. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..
[7] A. Griewank,et al. Approximate inverse preconditionings for sparse linear systems , 1992 .
[8] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[9] Wei-Pai Tang,et al. Ordering Methods for Preconditioned Conjugate Gradient Methods Applied to Unstructured Grid Problems , 1992, SIAM J. Matrix Anal. Appl..
[10] G. Golub,et al. Block Preconditioning for the Conjugate Gradient Method , 1985 .
[11] H. V. D. Vorst,et al. Iterative solution methods for certain sparse linear systems with a non-symmetric matrix arising from PDE-problems☆ , 1981 .
[12] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[13] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[14] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[15] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[16] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[17] G. Golub,et al. The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems , 1988 .
[18] Yousef Saad,et al. ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..
[19] H. V. D. Vorst,et al. A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .
[20] Yvan Notay,et al. DRIC: A dynamic version of the RIC method , 1994, Numer. Linear Algebra Appl..
[21] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[22] T. Chan,et al. An analysis of the composite step biconjugate gradient method , 1993 .
[23] Gene H. Golub,et al. Inner and Outer Iterations for the Chebyshev Algorithm , 1998 .
[24] H. V. D. Vorst,et al. High Performance Preconditioning , 1989 .
[25] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .
[26] I. Gustafsson. A class of first order factorization methods , 1978 .
[27] O. Axelsson,et al. A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .
[28] H. V. D. Vorst,et al. Generalized conjugate gradient squared , 1996 .
[29] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[30] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[31] Yves Robert,et al. Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor , 1989, Parallel Comput..
[32] Tony F. Chan,et al. A Note on the Efficiency of Domain Decomposed Incomplete Factorizations , 1990, SIAM J. Sci. Comput..
[33] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[34] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[35] D. Hut. A Newton Basis Gmres Implementation , 1991 .
[36] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[37] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[38] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[39] Homer F. Walker,et al. Residual Smoothing Techniques for Iterative Methods , 1994, SIAM J. Sci. Comput..
[40] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[41] Claude Pommerell,et al. Solution of large unsymmetric systems of linear equations , 1992 .
[42] R. Pavani,et al. Parallel Numerical Linear Algebra , 1995, PDP.
[43] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[44] Takumi Washio,et al. Parallel block preconditioning based on SSOR and MILU , 1994, Numer. Linear Algebra Appl..
[45] YereminA. Yu.,et al. Factorized sparse approximate inverse preconditionings I , 1993 .
[46] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[47] Anne Greenbaum,et al. Relations between Galerkin and Norm-Minimizing Iterative Methods for Solving Linear Systems , 1996, SIAM J. Matrix Anal. Appl..
[48] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[49] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[50] G. Golub,et al. How to generate unknown orthogonal polynomials out of known orthogonal polynomials , 1992 .
[51] A. Bruaset. A survey of preconditioned iterative methods , 1995 .
[52] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[53] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[54] G. Golub,et al. Estimates of Eigenvalues for Iterative Methods , 1989 .
[55] J. Ortega,et al. SOR as a preconditioner , 1995 .
[56] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[57] Magolu Monga-Made. Ordering strategies for modified block incomplete factorizations , 1995 .
[58] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[59] Fred Wubs,et al. Nested grids ILU-decomposition (NGILU) , 1996 .
[60] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[61] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[62] Gene H. Golub,et al. Line Iterative Methods for Cyclically Reduced Discrete Convection-Diffusion Problems , 1992, SIAM J. Sci. Comput..
[63] O. Axelsson,et al. On the eigenvalue distribution of a class of preconditioning methods , 1986 .
[64] O. Widlund. A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .
[65] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[66] J. Meijerink,et al. Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems , 1981 .
[67] Martin H. Gutknecht,et al. A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..
[68] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[69] Y. Saad,et al. Approximate inverse preconditioners for general sparse matrices , 1994 .
[70] Monga-Made Magolu. Modified block-approximate factorization strategies , 1992 .
[71] O. Axelsson. Solution of linear systems of equations: Iterative methods , 1977 .
[72] H. V. D. Vorst,et al. A comparison of some GMRES-like methods , 1992 .
[73] E. Desturler,et al. Nested Krylov methods and preserving the orthogonality , 1993 .
[74] P. K. W. Vinsome,et al. Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .
[75] Avram Sidi,et al. Efficient implementation of minimal polynomial and reduced rank extrapolation methods , 1991 .
[76] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[77] C. G. Broyden. A New Method of Solving Nonlinear Simultaneous Equations , 1969, Comput. J..
[78] Wolfgang Fichtner,et al. PILS: an iterative linear solver package for ill-conditioned systems , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).
[79] Henk A. van der Vorst,et al. Large tridiagonal and block tridiagonal linear systems on vector and parallel computers , 1987, Parallel Comput..
[80] Howard C. Elman,et al. Relaxed and stabilized incomplete factorizations for non-self-adjoint linear systems , 1989 .