First‐order reversal curve diagrams: A new tool for characterizing the magnetic properties of natural samples

Paleomagnetic and environmental magnetic studies are commonly conducted on samples containing mixtures of magnetic minerals and/or grain sizes. Major hysteresis loops are routinely used to provide information about variations in magnetic mineralogy and grain size. Standard hysteresis parameters, however, provide a measure of the bulk magnetic properties, rather than enabling discrimination between the magnetic components that contribute to the magnetization of a sample. By contrast, first-order reversal curve (FORC) diagrams, which we describe here, can be used to identify and discriminate between the different components in a mixed magnetic mineral assemblage. We use magnetization data from a class of partial hysteresis curves known as first-order reversal curves (FORCs) and transform the data into contour plots (FORC diagrams) of a two-dimensional distribution function. The FORC distribution provides information about particle switching fields and local interaction fields for the assemblage of magnetic particles within a sample. Superparamagnetic, single-domain, and multidomain grains, as well as magnetostatic interactions, all produce characteristic and distinct manifestations on a FORC diagram. Our results indicate that FORC diagrams can be used to characterize a wide range of natural samples and that they provide more detailed information about the magnetic particles in a sample than standard interpretational schemes which employ hysteresis data. It will be necessary to further develop the technique to enable a more quantitative interpretation of magnetic assemblages; however, even qualitative interpretation of FORC diagrams removes many of the ambiguities that are inherent to hysteresis data.

[1]  A. Roberts,et al.  Magnetostratigraphy of lower Miocene strata from the CRP-1 core, McMurdo Sound, Ross Sea, Antarctica , 1998 .

[2]  Peter M. Eick,et al.  The use of magnetic susceptibility and its frequency dependence for delineation of a magnetic strati , 1990 .

[3]  D. Dunlop,et al.  Preisach diagrams and anhysteresis : do they measure interactions? , 1990 .

[4]  J. Channell,et al.  Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestones , 1994 .

[5]  A. Hayashida,et al.  Correlation of widespread tephra deposits based on paleomagnetic directions: Link between a volcanic field and sedimentary sequences in Japan , 1996 .

[6]  D. Dunlop,et al.  Theory of partial thermoremanent magnetization in multidomain grains: 2. Effect of microcoercivity distribution and comparison with experiment , 1994 .

[7]  A. Roberts,et al.  Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems , 1995 .

[8]  M. Fuller,et al.  Hysteresis properties of titanomagnetites: Grain-size and compositional dependence , 1977 .

[9]  G. Bate,et al.  Statistical Stability of the Preisach Diagram for Particles of γ‐Fe2O3 , 1962 .

[10]  P. J. Flanders A vertical force alternating‐gradient magnetometer , 1990 .

[11]  F. Heider,et al.  Volcanic ash particles as carriers of remanent magnetization in deep-sea sediments from the Kerguelen Plateau , 1993 .

[12]  K. Fabian,et al.  Isothermal magnetization of samples with stable Preisach function: A survey of hysteresis, remanence, and rock magnetic parameters , 1997 .

[13]  M. L. Jackson,et al.  Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. , 1960 .

[14]  A. Roberts Magnetic properties of sedimentary greigite (Fe3S4) , 1995 .

[15]  M. Fuller,et al.  Magnetic hysteresis properties of synthetic titanomagnetites , 1976 .

[16]  D. Dunlop Preisach diagrams and remanent properties of interacting monodomain grains , 1969 .

[17]  C. Laj,et al.  Relative changes of the geomagnetic field intensity during the last 280 kyear from piston cores in the Açores area , 1996 .

[18]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[19]  Michael J. Singer,et al.  Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences , 1993 .

[20]  J. Tarduno Temporal trends of magnetic dissolution in the pelagic realm: gauging paleoproductivity? , 1994 .

[21]  J. Channell,et al.  Late Paleozoic remagnetization in limestones of the Craven Basin (northern England) and the rock magnetic fingerprint of remagnetized sedimentary carbonates , 1994 .

[22]  L. Tauxe,et al.  Potbellies, wasp-waists, and superparamagnetism in magnetic hysteresis , 1996 .

[23]  S. Cisowski,et al.  Interacting vs. non-interacting single domain behavior in natural and synthetic samples , 1981 .

[24]  M. Jackson,et al.  The superparamagnetism of Yucca Mountain Tuff , 1999 .

[25]  P. Dankers Relationship between median destructive field and remanent coercive forces for dispersed natural magnetite, titanomagnetite and hematite , 1981 .

[26]  H. Worm Time‐dependent IRM: A new technique for magnetic granulometry , 1999 .

[27]  M. Kovacheva Archaeomagnetic database from Bulgaria: the last 8000 years , 1997 .

[28]  K. Verosub,et al.  Thermoviscous remanent magnetism of Columbia River basalt blocks in the cascade landslide , 1994 .

[29]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[30]  C. Hillaire‐Marcel,et al.  The magnetic signature of rapidly deposited detrital layers from the Deep Labrador Sea: Relationship to North Atlantic Heinrich layers , 1996 .

[31]  M. Jackson Diagenetic sources of stable remanence in remagnetized paleozoic cratonic carbonates: A rock magnetic study , 1990 .

[32]  David J. Dunlop,et al.  Rock Magnetism: Frontmatter , 1997 .

[33]  D. Sprowl Numerical estimation of interactive effects in single‐domain magnetite , 1990 .

[34]  T. Zelinka,et al.  The vibrating-sample magnetometer and Preisach diagram , 1987 .

[35]  L. Parry Magnetization of immobilized particle dispersions with two distinct particle sizes , 1982 .

[36]  D. Veblen,et al.  Fe-oxide microcrystals in welded tuff from southern Nevada: origin of remanence carriers by precipitation in volcanic glass , 1988 .

[37]  D. Dunlop The rock magnetism of fine particles , 1981 .

[38]  Andrew P. Roberts,et al.  Characterizing interactions in fine magnetic particle systems using first order reversal curves , 1999 .

[39]  M. Dekkers Magnetic properties of natural goethite. I: Grain-size dependence of some low- and high-field related rockmagnetic parameters measured at room temperature , 1989 .

[40]  E. Della Torre,et al.  Relationship between the moving and the product Preisach models , 1991 .

[41]  E. Wohlfarth,et al.  Influence of densification on the remanence, the coercivities and the interaction field of elongated γFe 2 O 3 powders , 1978 .

[42]  T. Zelinka,et al.  The Preisach diagram, Wohlfarth's remanence formula and magnetic interactions , 1994 .

[43]  Song-Yun Wang,et al.  Incursion of sea water into Gucheng Lake detected by magnetic, biologic and chemical data , 1999 .

[44]  M. Tite,et al.  Preisach Diagrams and Magnetic Viscosity Phenomena for Soils and Synthetic Assemblies of Iron Oxide Grains , 1973 .

[45]  Lisa Tauxe,et al.  Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice , 1993 .

[46]  L. Néel Some theoretical aspects of rock-magnetism , 1955 .

[47]  Andrew P. Roberts,et al.  Environmental magnetic implications of Greigite (Fe3S4) Formation in a 3 m.y. lake sediment record from Butte Valley, northern California , 1996 .

[48]  T. Zelinka,et al.  Modelling of hysteresis processes in magnetic rock samples using the Preisach diagram , 1990 .

[49]  Louis Néel par Remarques sur la théorie des propriétés magnétiques des substances dures , 1955 .

[50]  H. Worm On the superparamagnetic—stable single domain transition for magnetite, and frequency dependence of susceptibility , 1998 .

[51]  P. Wasilewski Magnetic hysteresis in natural materials , 1973 .

[52]  STOCHASTIC DYNAMICS IN QUENCHED-IN DISORDER AND HYSTERESIS , 1998, cond-mat/9811034.