A sparse mesh for Compact Finite Difference - Fourier solvers with radius-dependent spectral resolution in circular domains
暂无分享,去创建一个
J. P. G. Galache | A. J. Torregrosa | S. Hoyas | A. Gil | A. Torregrosa | S. Hoyas | A. Gil | J. G. Galache
[1] Javier Jiménez,et al. Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003 , 2006 .
[2] Olga Shishkina,et al. A fourth order finite volume scheme for turbulent flow simulations in cylindrical domains , 2007 .
[3] I. Marusic,et al. The influence of pipe length on turbulence statistics computed from direct numerical simulation data , 2010 .
[4] Parviz Moin,et al. An Efficient Method for Temporal Integration of the Navier-Stokes Equations in Confined Axisymmetric Geometries , 1996 .
[5] Philip S. Marcus,et al. A Spectral Method for Polar Coordinates , 1995 .
[6] R. Moser,et al. Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions , 1991 .
[7] Z. Qian,et al. Three‐dimensional transient Navier–Stokes solvers in cylindrical coordinate system based on a spectral collocation method using explicit treatment of the pressure , 2011 .
[8] Zhong Zeng,et al. A Fourier-Legendre spectral element method in polar coordinates , 2012, J. Comput. Phys..
[9] Heli Chen,et al. A Direct Spectral Collocation Poisson Solver in Polar and Cylindrical Coordinates , 2000 .
[10] Ming-Chih Lai,et al. A simple compact fourth-order Poisson solver on polar geometry , 2002 .
[11] J. Sørensen,et al. Vorticity–velocity formulation of the 3D Navier–Stokes equations in cylindrical co‐ordinates , 2003 .
[12] S. Lele. Compact finite difference schemes with spectral-like resolution , 1992 .
[13] Wilhelm Heinrichs,et al. Spectral collocation schemes on the unit disc , 2004 .
[14] P. Moin,et al. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow , 2008, Journal of Fluid Mechanics.
[15] Y. Y. Kwan,et al. Efficient spectral-Galerkin methods for polar and cylindrical geometries , 2009 .