Type I Diabetes and Multiple Sclerosis Patients Target Islet Plus Central Nervous System Autoantigens; Nonimmunized Nonobese Diabetic Mice Can Develop Autoimmune Encephalitis1

Type I diabetes and multiple sclerosis (MS) are distinct autoimmune diseases where T cells target either islet or CNS self-proteins. Unexpectedly, we found that autoreactive T cells in diabetic patients, relatives with high diabetes risk, nonobese diabetic (NOD) mice, and MS patients routinely target classical islet as well as CNS autoantigens. The pathogenic potential of CNS autoreactivity was testable in NOD mice. Pertussis holotoxin, without additional Ags or adjuvants, allowed development of an NOD mouse-specific, autoimmune encephalitis with variable primary-progressive, monophasic, and relapsing-remitting courses. T cells from diabetic donors transferred CNS disease to pertussis toxin-pretreated NOD.scid mice, with accumulation of CD3/IFN-γ transcripts in the brain. Diabetes and MS appear more closely related than previously perceived. NOD mouse-specific, autoimmune encephalitis provides a new MS model to identify factors that determine alternative disease outcomes in hosts with similar autoreactive T cell repertoires.

[1]  P. Perrin,et al.  Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients , 1998, Journal of Neuroimmunology.

[2]  M. Trucco,et al.  Peptide Dose, MHC Affinity, and Target Self-Antigen Expression Are Critical for Effective Immunotherapy of Nonobese Diabetic Mouse Prediabetes1 , 2000, The Journal of Immunology.

[3]  D. McFarlin,et al.  Acute experimental allergic encephalomyelitis in the mouse: immunopathology of the developing lesion. , 1985, Cellular immunology.

[4]  T. Owens,et al.  The immunology of multiple sclerosis and its animal model, experimental allergic encephalomyelitis. , 1995, Neurologic clinics.

[5]  A. Ziegler,et al.  Cellular Immune Response to Diverse Islet Cell Antigens in IDDM , 1996, Diabetes.

[6]  I. Romero,et al.  Transporting therapeutics across the blood-brain barrier. , 1996, Molecular medicine today.

[7]  A. Sette,et al.  T cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans , 1994, Journal of Neuroimmunology.

[8]  B. Weinshenker,et al.  Epidemiology of multiple sclerosis. , 1996, Neurologic clinics.

[9]  S. Amor,et al.  Cell biology of autoimmune diseases. , 1998, International review of cytology.

[10]  H. Dosch,et al.  Loss of Self-Tolerance to ICA69 in Nonobese Diabetic Mice , 1997, Diabetes.

[11]  P. Travers,et al.  Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. , 1996, Journal of immunology.

[12]  J. Seidman,et al.  QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2 , 1999, Nature Genetics.

[13]  K. Warren,et al.  Multiple Sclerosis and Associated Diseases: A Relationship to Diabetes Mellitus , 1981, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[14]  P. Bingley,et al.  Combined Analysis of Autoantibodies Improves Prediction of IDDM in Islet Cell Antibody-Positive Relatives , 1994, Diabetes.

[15]  J. Ilonen,et al.  Self and non-self antigen in diabetic autoimmunity: molecules and mechanisms. , 1995, Molecular aspects of medicine.

[16]  J. Copeman,et al.  Crosses of NOD mice with the related NON strain. A polygenic model for IDDM. , 1995, Diabetes.

[17]  R. Doerge,et al.  Sequence polymorphisms in the chemokines Scya1 (TCA-3), Scya2 (monocyte chemoattractant protein (MCP)-1), and Scya12 (MCP-5) are candidates for eae7, a locus controlling susceptibility to monophasic remitting/nonrelapsing experimental allergic encephalomyelitis. , 1999, Journal of immunology.

[18]  M. Mattéi,et al.  Genetic control of diabetes progression. , 1997, Immunity.

[19]  A. Ben-nun,et al.  Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: Reactivity to the extracellular domain of MOG is directed against three main regions , 1997, European journal of immunology.

[20]  C. Boitard,et al.  Pancreatic islet beta cells drive T cell-immune responses in the nonobese diabetic mouse model , 1995, The Journal of experimental medicine.

[21]  J. Danska,et al.  IL-4 expression at the onset of islet inflammation predicts nondestructive insulitis in nonobese diabetic mice. , 1997, Journal of immunology.

[22]  L. Kuller,et al.  Genetic, Immunological, and Metabolic Determinants of Risk for Type 1 Diabetes Mellitus in Families , 1992, Diabetic medicine : a journal of the British Diabetic Association.

[23]  R. Hohlfeld,et al.  Multiple sclerosis: B- and T-cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein. , 1999, Brain : a journal of neurology.

[24]  C. June,et al.  Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. , 1998 .

[25]  C. Fathman,et al.  Islet-Infiltrating Lymphocytes from Prediabetic NOD Mice Rapidly Transfer Diabetes to NOD-scid/scid mice , 1995, Diabetes.

[26]  H. Dosch,et al.  Molecular cloning of murine ICA69: diabetes-prone mice recognize the human autoimmune-epitope, Tep69, conserved in splice variants from both species. , 1997, Biochimica et Biophysica Acta.

[27]  S. S. Hull,et al.  Pertussis toxin-induced ADP ribosylation of inhibitor G proteins alters vagal control of heart rate in vivo. , 1993, The American journal of physiology.

[28]  D. Becker,et al.  Persistent T cell anergy in human type 1 diabetes. , 1999, Journal of immunology.

[29]  R. Tisch,et al.  Induction of GAD65-specific regulatory T-cells inhibits ongoing autoimmune diabetes in nonobese diabetic mice. , 1998, Diabetes.

[30]  M. Gaab,et al.  The influence of nimodipine on cerebral blood flow autoregulation and blood-brain barrier. , 1988, Journal of neurosurgery.

[31]  H. Chase,et al.  Prediction of Type I Diabetes in First-Degree Relatives Using a Combination of Insulin, GAD, and ICA512bdc/IA-2 Autoantibodies , 1996, Diabetes.

[32]  O. Snead,et al.  Basic mechanisms of generalized absence seizures , 1995, Annals of neurology.

[33]  A. Joutel,et al.  Autoimmune diseases in families of French patients with multiple sclerosis , 2000, Acta neurologica Scandinavica.

[34]  S. Michie,et al.  The Roles of α4-Integrins in the Development of Insulin-Dependent Diabetes Mellitus , 1998 .

[35]  J. S. Swan,et al.  Hashimoto's thyroiditis and insulin-dependent diabetes mellitus: differences among individuals with and without abnormal thyroid function. , 1998, The Journal of clinical endocrinology and metabolism.

[36]  A. Bredberg,et al.  Prevalence of IgA-Antiendomysium and IgA-Antigliadin Autoantibodies at Diagnosis of Insulin-Dependent Diabetes Mellitus in Swedish Children and Adolescents , 1999, Pediatrics.

[37]  A. Peck,et al.  Pertussigen treatment retards, but fails to prevent, the development of type I, insulin-dependent diabetes mellitus (IDDM) in NOD mice. , 1991, Autoimmunity.

[38]  B. Lindegård,et al.  Diseases associated with multiple sclerosis and epilepsy , 1985, Acta neurologica Scandinavica.

[39]  G. Nolan,et al.  Local delivery of TNF by retrovirus-transduced T lymphocytes exacerbates experimental autoimmune encephalomyelitis. , 1999, Clinical immunology.

[40]  S. Schmidt Candidate autoantigens in multiple sclerosis , 1999, Multiple sclerosis.

[41]  G. Eisenbarth,et al.  Multiple genes/multiple autoantigens role in type 1 diabetes , 2000, Clinical reviews in allergy & immunology.

[42]  M. Kocova,et al.  Autoimmunity and genetics contribute to the risk of insulin-dependent diabetes mellitus in families: islet cell antibodies and HLA DQ heterodimers. , 1992, American journal of epidemiology.

[43]  C. Wilson,et al.  Electrophysiologic Analysis of a Chronic Seizure Model After Unilateral Hippocampal KA Injection , 1999, Epilepsia.

[44]  C. Greenbaum,et al.  Peripheral blood mononuclear cells of insulin-dependent diabetic patients respond to multiple islet cell proteins. , 1996, Journal of immunology.

[45]  H. Perron,et al.  Correlation analysis between bovine populations, other farm animals, house pets, and multiple sclerosis prevalence. , 1993, Neuroepidemiology.

[46]  H. McFarland,et al.  T cell recognition of myelin proteolipid protein and myelin proteolipid protein peptides in the peripheral blood of multiple sclerosis and control subjects , 1998, Journal of Neuroimmunology.

[47]  S. Tonegawa,et al.  CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis. , 1999, Journal of immunology.

[48]  J. Haines,et al.  The genetic epidemiology of multiple sclerosis , 2003, Journal of Neuroimmunology.

[49]  M.,et al.  The Isolation , Characterization , and Lipid-aggregating Properties of a Citrulline Containing Myelin Basic Protein * , 2001 .

[50]  O. Abramsky,et al.  An association between multiple sclerosis and diabetes mellitus , 1992 .

[51]  E. Shevach,et al.  Cbl-b regulates the CD28 dependence of T-cell activation , 2000, Nature.

[52]  J. Trent,et al.  Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[53]  C. Janeway,et al.  Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library , 1999, Nature Medicine.