Image denoising and detail preservation by probabilistic models

In this paper, we present a novel noise suppression and detail preservation algorithm. As a first step, the test image is pre-processed through a multiresolution analysis employing the discrete wavelet transform. Then, we design a fast and robust total variation technique, incorporating a statistical representation in the style of maximum likelihood estimation. Finally, we compare this proposed approach to current state-of-the-art denoising methods applied on synthetic and real images. The results demonstrate the encouraging performance of our algorithm.

[1]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[2]  Vicent Caselles,et al.  Image Recovery via Multiscale Total Variation , 1998 .

[3]  S. Mallat A wavelet tour of signal processing , 1998 .

[4]  Probability Via Expectation (3rd ed.). , 1993 .

[5]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  V. Caselles,et al.  Minimizing total variation flow , 2000, Differential and Integral Equations.

[8]  Stanley Osher,et al.  Image decomposition, image restoration, and texture modeling using total variation minimization and the H/sup -1/ norm , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[9]  B. Vidakovic Nonlinear wavelet shrinkage with Bayes rules and Bayes factors , 1998 .

[10]  T. Tony Cai,et al.  WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES , 1998 .

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  D. Dobson,et al.  Convergence of an Iterative Method for Total Variation Denoising , 1997 .

[13]  Peter Whittle,et al.  Probability via expectation , 1992 .

[14]  François Malgouyres,et al.  Combining total variation and wavelet packet approaches for image deblurring , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[15]  Adrian E. Raftery,et al.  Approximate Bayes Factors for Image Segmentation: The Pseudolikelihood Information Criterion (PLIC) , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[17]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[18]  Jacques Froment,et al.  Reconstruction of Wavelet Coefficients Using Total Variation Minimization , 2002, SIAM J. Sci. Comput..

[19]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  S. Durand,et al.  IMAGE DEBLURRING, SPECTRUM INTERPOLATION AND APPLICATION TO SATELLITE IMAGING , 2000 .

[21]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.