A New Chaotic System with Positive Topological Entropy
暂无分享,去创建一个
[1] Johan A. K. Suykens,et al. n-scroll chaos generators: a simple circuit model , 2001 .
[2] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[3] S. Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .
[4] Guanrong Chen,et al. On the generalized Lorenz canonical form , 2005 .
[5] K. Mischaikow,et al. Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.
[6] O. Rössler. An equation for continuous chaos , 1976 .
[7] Qingdu Li,et al. Chaotic dynamics in a class of three dimensional glass networks. , 2006, Chaos.
[8] Guanrong Chen,et al. The compound structure of a new chaotic attractor , 2002 .
[9] Guanrong Chen,et al. A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.
[10] L. P. Šil'nikov,et al. A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .
[11] Luigi Fortuna,et al. A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.
[12] Qingdu Li,et al. An Algorithm to Automatically Detect the Smale Horseshoes , 2012 .
[13] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[14] J. Sprott,et al. Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[15] R. Lozi. UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .
[16] M. Hénon. A two-dimensional mapping with a strange attractor , 1976 .
[17] Chi K. Tse,et al. Impulsive control and synchronization of the Lorenz systems family , 2007 .
[18] Konstantin Mischaikow,et al. Chaos in the Lorenz equations: A computer assisted proof. Part II: Details , 1998, Math. Comput..
[19] Qigui Yang,et al. A Modified Generalized Lorenz-Type System and its Canonical Form , 2009, Int. J. Bifurc. Chaos.
[20] Qingdu Li,et al. A computer-assisted proof of chaos in Josephson junctions , 2006 .
[21] 李清都,et al. Horseshoe and entropy in a fractional-order unified system , 2011 .
[22] Xiao-Song Yang,et al. Horseshoes in piecewise continuous maps , 2004 .
[23] J C Sprott,et al. Maximally complex simple attractors. , 2007, Chaos.
[24] Johan A. K. Suykens,et al. Chaotic systems synchronization , 2003 .
[25] D. Chillingworth. DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .
[26] Guanrong Chen,et al. On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.
[27] Gang Hu,et al. Chaos-based secure communications in a large community. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] L. Chua,et al. The double scroll family , 1986 .
[29] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[30] Z. Galias,et al. Computer assisted proof of chaos in the Lorenz equations , 1998 .
[31] L. Chua,et al. Methods of qualitative theory in nonlinear dynamics , 1998 .
[32] Xiao-Song Yang,et al. A Simple Method for Finding Topological Horseshoes , 2010, Int. J. Bifurc. Chaos.
[33] Robert M. May,et al. Simple mathematical models with very complicated dynamics , 1976, Nature.
[34] P. Zgliczynski. Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .
[35] Wansheng Tang,et al. Approximate synchronization of two non-linear systems via impulsive control , 2012, J. Syst. Control. Eng..
[36] Xiao-Song Yang,et al. Horseshoes in a Chaotic System with only One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.
[37] Zbigniew Galias,et al. Positive Topological Entropy of Chua's Circuit: A Computer Assisted Proof , 1997 .
[38] Kwok-Wo Wong,et al. An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion , 2013, Commun. Nonlinear Sci. Numer. Simul..