A New Chaotic System with Positive Topological Entropy

This paper introduces a new simple system with a butterfly chaotic attractor. This system has rich and complex dynamics. With some typical parameters, its Lyapunov dimension is greater than other known three dimensional chaotic systems. It exhibits chaotic behavior over a large range of parameters, and the divergence of flow of this system is not a constant. The dynamics of this new system are analyzed via Lyapunov exponent spectrum, bifurcation diagrams, phase portraits and the Poincare map. The compound structures of this new system are also analyzed. By means of topological horseshoe theory and numerical computation, the Poincare map defined for the system is proved to be semi-conjugate to 3-shift map, and thus the system has positive topological entropy.

[1]  Johan A. K. Suykens,et al.  n-scroll chaos generators: a simple circuit model , 2001 .

[2]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[3]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[4]  Guanrong Chen,et al.  On the generalized Lorenz canonical form , 2005 .

[5]  K. Mischaikow,et al.  Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.

[6]  O. Rössler An equation for continuous chaos , 1976 .

[7]  Qingdu Li,et al.  Chaotic dynamics in a class of three dimensional glass networks. , 2006, Chaos.

[8]  Guanrong Chen,et al.  The compound structure of a new chaotic attractor , 2002 .

[9]  Guanrong Chen,et al.  A Unified Lorenz-Type System and its Canonical Form , 2006, Int. J. Bifurc. Chaos.

[10]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[11]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[12]  Qingdu Li,et al.  An Algorithm to Automatically Detect the Smale Horseshoes , 2012 .

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[16]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[17]  Chi K. Tse,et al.  Impulsive control and synchronization of the Lorenz systems family , 2007 .

[18]  Konstantin Mischaikow,et al.  Chaos in the Lorenz equations: A computer assisted proof. Part II: Details , 1998, Math. Comput..

[19]  Qigui Yang,et al.  A Modified Generalized Lorenz-Type System and its Canonical Form , 2009, Int. J. Bifurc. Chaos.

[20]  Qingdu Li,et al.  A computer-assisted proof of chaos in Josephson junctions , 2006 .

[21]  李清都,et al.  Horseshoe and entropy in a fractional-order unified system , 2011 .

[22]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[23]  J C Sprott,et al.  Maximally complex simple attractors. , 2007, Chaos.

[24]  Johan A. K. Suykens,et al.  Chaotic systems synchronization , 2003 .

[25]  D. Chillingworth DYNAMICAL SYSTEMS: STABILITY, SYMBOLIC DYNAMICS AND CHAOS , 1998 .

[26]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[27]  Gang Hu,et al.  Chaos-based secure communications in a large community. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  L. Chua,et al.  The double scroll family , 1986 .

[29]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[30]  Z. Galias,et al.  Computer assisted proof of chaos in the Lorenz equations , 1998 .

[31]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[32]  Xiao-Song Yang,et al.  A Simple Method for Finding Topological Horseshoes , 2010, Int. J. Bifurc. Chaos.

[33]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[34]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[35]  Wansheng Tang,et al.  Approximate synchronization of two non-linear systems via impulsive control , 2012, J. Syst. Control. Eng..

[36]  Xiao-Song Yang,et al.  Horseshoes in a Chaotic System with only One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[37]  Zbigniew Galias,et al.  Positive Topological Entropy of Chua's Circuit: A Computer Assisted Proof , 1997 .

[38]  Kwok-Wo Wong,et al.  An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion , 2013, Commun. Nonlinear Sci. Numer. Simul..