CSDE1 promotes miR-451 biogenesis

MicroRNAs are sequentially processed by RNase III enzymes Drosha and Dicer. miR-451 is a highly conserved miRNA in vertebrates which bypasses Dicer processing and instead relies on AGO2 for its maturation. miR-451 is highly expressed in erythrocytes and regulates the differentiation of erythroblasts into mature red blood cells. However, the mechanistic details underlying miR-451 biogenesis in erythrocytes remains obscure. Here, we report that the RNA binding protein CSDE1 which is required for the development of erythroblasts into erythrocytes, controls the expression of miR-451 in erythroleukemia cells. CSDE1 binds miR-451 and regulates AGO2 processing of pre-miR-451 through its N-terminal domains. CSDE1 further interacts with PARN and promotes the trimming of intermediate miR-451 to the mature length. Together, our results demonstrate that CSDE1 promotes biogenesis of miR-451 in erythroid progenitors.

[1]  D. Bartel,et al.  MicroRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position , 2022, eLife.

[2]  F. Gebauer,et al.  CSDE1 attenuates microRNA-mediated silencing of PMEPA1 in melanoma , 2021, Oncogene.

[3]  V. Beneš,et al.  Pseudo-RNA-Binding Domains Mediate RNA Structure Specificity in Upstream of N-Ras , 2020, Cell reports.

[4]  S. Moxon,et al.  Ago2-Dependent Processing Allows miR-451 to Evade the Global MicroRNA Turnover Elicited during Erythropoiesis. , 2020, Molecular cell.

[5]  F. Gebauer,et al.  CSDE1 controls gene expression through the miRNA-mediated decay machinery , 2020, Life Science Alliance.

[6]  Weifeng Gu,et al.  A convenient strategy to clone small RNA and mRNA for high-throughput sequencing , 2019, RNA.

[7]  C. Shin,et al.  Poly(A)-specific ribonuclease sculpts the 3′ ends of microRNAs , 2018, RNA.

[8]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[9]  G. Meister,et al.  Regulation of microRNA biogenesis and its crosstalk with other cellular pathways , 2018, Nature Reviews Molecular Cell Biology.

[10]  Sebastien M. Weyn-Vanhentenryck,et al.  LIN28 Selectively Modulates a Subclass of Let-7 MicroRNAs. , 2018, Molecular cell.

[11]  D. Bartel Metazoan MicroRNAs , 2018, Cell.

[12]  R. Horos,et al.  Csde1 binds transcripts involved in protein homeostasis and controls their expression in an erythroid cell line , 2018, Scientific Reports.

[13]  Michael T. McManus,et al.  Dual Strategies for Argonaute2-Mediated Biogenesis of Erythroid miRNAs Underlie Conserved Requirements for Slicing in Mammals. , 2018, Molecular cell.

[14]  C. Dieterich,et al.  A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells , 2017, Nature Communications.

[15]  Henning Urlaub,et al.  A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis. , 2017, Molecular cell.

[16]  C. Shin,et al.  Non-canonical targets destabilize microRNAs in human Argonautes , 2017, Nucleic acids research.

[17]  Panagiotis K. Papasaikas,et al.  UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis. , 2016, Cancer cell.

[18]  Gene W Yeo,et al.  Pairing beyond the Seed Supports MicroRNA Targeting Specificity. , 2016, Molecular cell.

[19]  Jinyan Huang,et al.  Genome-wide analysis of YB-1-RNA interactions reveals a novel role of YB-1 in miRNA processing in glioblastoma multiforme , 2015, Nucleic acids research.

[20]  R. E. Luna,et al.  eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference , 2015, Nature Communications.

[21]  R. Bhatnagar,et al.  Inference of the Oxidative Stress Network in Anopheles stephensi upon Plasmodium Infection , 2014, PloS one.

[22]  Nara Lee,et al.  Mammalian 5′-Capped MicroRNA Precursors that Generate a Single MicroRNA , 2013, Cell.

[23]  Tsutomu Suzuki,et al.  Poly(A)-specific ribonuclease mediates 3'-end trimming of Argonaute2-cleaved precursor microRNAs. , 2013, Cell reports.

[24]  V. Ambros,et al.  The decapping scavenger enzyme DCS-1 controls microRNA levels in Caenorhabditis elegans. , 2013, Molecular cell.

[25]  David P. Bartel,et al.  Beyond Secondary Structure: Primary-Sequence Determinants License Pri-miRNA Hairpins for Processing , 2013, Cell.

[26]  E. Lai,et al.  Functional parameters of Dicer-independent microRNA biogenesis. , 2012, RNA.

[27]  R. Horos,et al.  Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. , 2012, Blood.

[28]  P. Dubus,et al.  The RNA‐Binding Protein Unr Prevents Mouse Embryonic Stem Cells Differentiation Toward the Primitive Endoderm Lineage , 2011, Stem cells.

[29]  H. Lodish,et al.  miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. , 2011, Genes & development.

[30]  E. Lai,et al.  Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates , 2010, Cell cycle.

[31]  E. Lai,et al.  Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis , 2010, Proceedings of the National Academy of Sciences.

[32]  Xiaoxia Qi,et al.  Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. , 2010, Genes & development.

[33]  Jing Jiang,et al.  miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. , 2010, Genes & development.

[34]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[35]  G. Hannon,et al.  A dicer-independent miRNA biogenesis pathway that requires Ago catalysis , 2010, Nature.

[36]  D. Haussecker,et al.  Human tRNA-derived small RNAs in the global regulation of RNA silencing. , 2010, RNA.

[37]  F. Gebauer,et al.  Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[38]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[39]  P. Waterhouse,et al.  miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. , 2009, Blood.

[40]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[41]  J. Prchal,et al.  Aberrant expression of microRNA in polycythemia vera , 2008, Haematologica.

[42]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[43]  J. Mendell,et al.  Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. , 2007, Experimental hematology.

[44]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[45]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[46]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[47]  Chris P. Miller,et al.  MicroRNA expression dynamics during murine and human erythroid differentiation. , 2007, Experimental hematology.

[48]  S. Cornelis,et al.  A role for hnRNP C1/C2 and Unr in internal initiation of translation during mitosis , 2007, The EMBO journal.

[49]  T. Naveh-Many,et al.  In vitro evidence that upstream of N-ras participates in the regulation of parathyroid hormone messenger ribonucleic acid stability. , 2006, Molecular endocrinology.

[50]  M. Hentze,et al.  Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. , 2006, Genes & development.

[51]  F. Gebauer,et al.  Drosophila UNR is required for translational repression of male-specific lethal 2 mRNA during regulation of X-chromosome dosage compensation. , 2006, Genes & development.

[52]  A. Jacquemin-Sablon,et al.  Regulation of Unr Expression by 5'- and 3'-Untranslated Regions of its mRNA through Modulation of Stability and IRES Mediated Translation , 2005, RNA biology.

[53]  S. Cornelis,et al.  UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein , 2005, Nucleic acids research.

[54]  R. Jackson,et al.  Protein Factor Requirements of the Apaf-1 Internal Ribosome Entry Segment: Roles of Polypyrimidine Tract Binding Protein and upstream of N-ras , 2001, Molecular and Cellular Biology.

[55]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[56]  Anton J. Enright,et al.  The miR-144/451 locus is required for erythroid homeostasis , 2010, The Journal of experimental medicine.