Quantum geodesic flows and curvature

We study geodesics flows on curved quantum Riemannian geometries using a recent formulation in terms of bimodule connections and completely positive maps. We complete this formalism with a canonical ∗ operation on noncommutative vector fields. We show on a classical manifold how the Ricci tensor arises naturally in our approach as a term in the convective derivative of the divergence of the geodesic velocity field, and use this to propose a similar object in the noncommutative case. Examples include quantum geodesic flows on the algebra of 2 x 2 matrices, fuzzy spheres and the q-sphere.

[1]  G. ’t Hooft QUANTIZATION OF POINT PARTICLES IN 2+1 DIMENSIONAL GRAVITY AND SPACE-TIME DISCRETENESS , 1996 .

[2]  J. Gracia-Bond́ıa,et al.  The Moyal representation for spin , 1989 .

[3]  Shahn Majid,et al.  Geometric Dirac operator on the fuzzy sphere , 2021, Letters in Mathematical Physics.

[4]  S. Majid,et al.  Fuzzy and discrete black hole models , 2020, Classical and Quantum Gravity.

[5]  John E. Roberts,et al.  The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.

[6]  E. Beggs,et al.  Quantum Riemannian Geometry , 2020 .

[7]  E. Beggs,et al.  Compatible Connections in Noncommutative Riemannian Geometry , 2009, 0904.0539.

[8]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[9]  S. Woronowicz,et al.  Differential calculus on compact matrix pseudogroups (quantum groups) , 1989 .

[10]  P. Podleś,et al.  Quantum spheres , 1987 .

[11]  Chen Ning Yang,et al.  On quantized space-time , 1947 .

[12]  E. Beggs Noncommutative geodesics and the KSGNS construction , 2018, Journal of Geometry and Physics.

[13]  S. Majid,et al.  Quantum gravity and Riemannian geometry on the fuzzy sphere , 2020, Letters in Mathematical Physics.

[14]  Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere , 2003, math/0307351.

[15]  Shahn Majid Hopf Algebras for Physics at the Planck Scale , 1988 .

[16]  S. Majid Quantum gravity on a square graph , 2018, Classical and Quantum Gravity.

[17]  J. Madore,et al.  The fuzzy sphere , 1992 .

[18]  E. Beggs,et al.  Gravity induced from quantum spacetime , 2013, 1305.2403.

[19]  E. Beggs,et al.  Spectral triples from bimodule connections and Chern connections , 2015, 1508.04808.