Quantum geodesic flows and curvature
暂无分享,去创建一个
[1] G. ’t Hooft. QUANTIZATION OF POINT PARTICLES IN 2+1 DIMENSIONAL GRAVITY AND SPACE-TIME DISCRETENESS , 1996 .
[2] J. Gracia-Bond́ıa,et al. The Moyal representation for spin , 1989 .
[3] Shahn Majid,et al. Geometric Dirac operator on the fuzzy sphere , 2021, Letters in Mathematical Physics.
[4] S. Majid,et al. Fuzzy and discrete black hole models , 2020, Classical and Quantum Gravity.
[5] John E. Roberts,et al. The quantum structure of spacetime at the Planck scale and quantum fields , 1995, hep-th/0303037.
[6] E. Beggs,et al. Quantum Riemannian Geometry , 2020 .
[7] E. Beggs,et al. Compatible Connections in Noncommutative Riemannian Geometry , 2009, 0904.0539.
[8] Andrew Lesniewski,et al. Noncommutative Geometry , 1997 .
[9] S. Woronowicz,et al. Differential calculus on compact matrix pseudogroups (quantum groups) , 1989 .
[10] P. Podleś,et al. Quantum spheres , 1987 .
[11] Chen Ning Yang,et al. On quantized space-time , 1947 .
[12] E. Beggs. Noncommutative geodesics and the KSGNS construction , 2018, Journal of Geometry and Physics.
[13] S. Majid,et al. Quantum gravity and Riemannian geometry on the fuzzy sphere , 2020, Letters in Mathematical Physics.
[14] Noncommutative Riemannian and Spin Geometry of the Standard q-Sphere , 2003, math/0307351.
[15] Shahn Majid. Hopf Algebras for Physics at the Planck Scale , 1988 .
[16] S. Majid. Quantum gravity on a square graph , 2018, Classical and Quantum Gravity.
[17] J. Madore,et al. The fuzzy sphere , 1992 .
[18] E. Beggs,et al. Gravity induced from quantum spacetime , 2013, 1305.2403.
[19] E. Beggs,et al. Spectral triples from bimodule connections and Chern connections , 2015, 1508.04808.