Tunable Cr/sup 4+/:YSO Q-switched Cr:LiCAF laser

Tunable passive Q-switching (781 nm to 806 nm at 300 K) of a flash-lamp pumped Cr/sup 3+/:LiCaAlF/sub 6/ (Cr:LiCAF) laser with a Cr/sup 4+/:Y/sub 2/SiO/sub 5/ (Cr/sup 4+/:YSO) broad-band solid-state saturable absorber has been realized. Typical pulse widths of the Q-switched laser output ranged from 40 ns to 80 ns, depending on the lasing wavelength. Spectral narrowing and reduced beam diameter with the use of the saturable absorber were observed. The ground state and the excited state absorption cross sections of the Cr/sup 4+/:YSO absorber were found by bleaching experiments to be (7.0/spl plusmn/1.4)/spl times/10/sup -19/ cm/sup 2/ and (2.3/spl plusmn/0.5)/spl times/10/sup -19/ cm/sup 2/ at 694 nm, respectively. Numerical simulation was utilized to simulate the Cr:LiCAF passive Q-switching with Cr/sup 4+/:YSO solid-state saturable absorber. >

[1]  Toomas H. Allik,et al.  Er:Ca5(PO4)3F saturable‐absorber Q switch for the Er:glass laser at 1.53 μm , 1993 .

[2]  A. J. Alcock,et al.  Experimental Investigation of Cr 4+ in YAG as a Passive Q-Switch , 1992 .

[3]  Chandler J. Kennedy,et al.  Tetravalent Chromium Solid-State Passive Q Switch for Nd:YAG Laser Systems , 1991 .

[4]  Yen-Kuang Kuo,et al.  Cr4+:Gd3Sc2Ga3O12 passive Q‐switch for the Cr3+:LiCaAlF6 laser , 1994 .

[5]  K. K. Lee,et al.  Self-Q-switched diode-end-pumped Cr,Nd:YAG laser with polarized output. , 1993, Optics letters.

[6]  A. Szabo,et al.  Theory of Laser Giant Pulsing by a Saturable Absorber , 1965 .

[7]  R. Scheps Cr:LiCaAlF/sub 6/ laser pumped by visible laser diodes , 1991 .

[8]  F. Gires 9C6 - Experimental studies of saturable optical absorption , 1966 .

[9]  B. Woods,et al.  Thermomechanical and thermo-optical properties of the LiCaAlF 6 :Cr 3+ laser material , 1991 .

[10]  William G. Wagner,et al.  Evolution of the Giant Pulse in a Laser , 1963 .

[11]  Wei Chen,et al.  Cr4+: GSGG saturable absorber Q-switch for the ruby laser , 1993 .

[12]  Lloyd L. Chase,et al.  LiCaAlF/sub 6/:Cr/sup 3+/: a promising new solid-state laser material , 1988 .

[13]  W. Rudolph,et al.  Analysis of saturable absorbers, interacting with gaussian pulses , 1980 .

[14]  M Birnbaum,et al.  Dy(2+):CaF(2) saturable-absorber Q switch for the ruby laser. , 1994, Applied optics.

[15]  Michael Hercher,et al.  An analysis of saturable absorbers. , 1967, Applied optics.

[16]  Lloyd L. Chase,et al.  Optical spectroscopy of the new laser materials, LiSrAlF6:Cr3+ and LiCaAlF6:Cr3+ , 1989 .

[17]  P. Avizonis,et al.  Experimental and Theoretical Ruby Laser Amplifier Dynamics , 1966 .

[18]  M. I. Demchuk,et al.  Chromium-doped forsterite as a solid-state saturable absorber. , 1992, Optics letters.

[19]  T. Y. Chana Fast Self-Induced Refractive Index Changes In Optical Media: A Survey , 1981 .

[20]  Orazio Svelto,et al.  Quasi-continuous wave laser operation of Cr4+-doped Y2SiO5 at room temperature , 1993 .

[21]  Michael Bass,et al.  Broadband, intensity dependent absorption in tetravalent chromium‐doped crystals , 1993 .

[22]  M Birnbaum,et al.  Dual Q switching and laser action at 1.06 and 1.44 microm in a Nd(3+):YAG-Cr(4+):YAG oscillator at 300 K. , 1993, Optics letters.

[23]  Hergen Eilers,et al.  Near infrared luminescence properties of the laser material Cr:Y2SiO5 , 1993 .

[24]  Marly B. Camargo,et al.  U4+:SrF2 efficient saturable absorber Q switch for the 1.54 μm erbium:glass laser , 1994 .

[25]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .