A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?

This work is supported by National Science Foundation (DMR1508144), NSFC (Grant Nos. 61274123, 61474099, 61674127,and 61431014), and micro-fabrication/nano-fabrication platform of ZJU University, and the Fundamental Research Funds for the Central Universities (2016XZZX001-05). This work is also supported by ZJU Cyber Scholarship and Cyrus Tang Center for Sensor Materials and Applications, the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University, the Open Research Fund of State Key Laboratory of Nanodevices and Applications at Chinese Academy of Sciences (No.14ZS01), and Visiting-by-Fellowship of Churchill College at University of Cambridge.

[1]  Nam-Gyu Park,et al.  Transparent Conductive Oxide‐Free Graphene‐Based Perovskite Solar Cells with over 17% Efficiency , 2016 .

[2]  Hongwei Zhu,et al.  Hybrid Tunnel Junction-Graphene Transparent Conductive Electrodes for Nitride Lateral Light Emitting Diodes. , 2016, ACS applied materials & interfaces.

[3]  Xinming Li,et al.  TiO2 enhanced ultraviolet detection based on a graphene/Si Schottky diode , 2015 .

[4]  A I Reeder,et al.  Patterns of real-time occupational ultraviolet radiation exposure among a sample of outdoor workers in New Zealand. , 2009, Public health.

[5]  Dong Hee Shin,et al.  Near-ultraviolet-sensitive graphene/porous silicon photodetectors. , 2014, ACS applied materials & interfaces.

[6]  T. Ren,et al.  Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene. , 2014, Nano letters.

[7]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[8]  S. Nihtianov,et al.  Comparative Study of Silicon-Based Ultraviolet Photodetectors , 2012, IEEE Sensors Journal.

[9]  Philippe Godignon,et al.  SiC Schottky Diodes for Harsh Environment Space Applications , 2011, IEEE Transactions on Industrial Electronics.

[10]  A. Torres,et al.  Method for outlier detection: a tool to assess the consistency between laboratory data and ultraviolet-visible absorbance spectra in wastewater samples. , 2014, Water science and technology : a journal of the International Association on Water Pollution Research.

[11]  Zhiwei Gao,et al.  Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. , 2013, Nanoscale.

[12]  Ahmed A. Al-Ghamdi,et al.  New concept ultraviolet photodetectors , 2015 .

[13]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[14]  Satoshi Kawata,et al.  Deep-UV biological imaging by lanthanide ion molecular protection. , 2016, Biomedical optics express.

[15]  Manijeh Razeghi Deep ultraviolet light-emitting diodes and photodetectors for UV communications , 2005, SPIE OPTO.

[16]  Swastik Kar,et al.  Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. , 2013, Nano letters.

[17]  Yu. A. Goldberg Semiconductor near-ultraviolet photoelectronics , 1999 .

[18]  Dongxu Zhao,et al.  Solar-Blind Avalanche Photodetector Based On Single ZnO-Ga₂O₃ Core-Shell Microwire. , 2015, Nano letters.

[19]  Shui-Tong Lee,et al.  Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications , 2016, Nano Research.

[20]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[21]  Min Zhang,et al.  Schottky barrier characteristics and internal gain mechanism of TiO2 UV detectors. , 2012, Applied optics.

[22]  S. Mohammad Nejad,et al.  Recent advances in ultraviolet photodetectors , 2015 .

[23]  Erdi Kus¸demir,et al.  Epitaxial graphene contact electrode for silicon carbide based ultraviolet photodetector , 2015 .

[24]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[25]  H. Melchior,et al.  PtSi–n–Si Schottky‐barrier photodetectors with stable spectral responsivity in the 120–250 nm spectral range , 1996 .

[26]  Ting Yu,et al.  Graphene Coupled with Silicon Quantum Dots for High‐Performance Bulk‐Silicon‐Based Schottky‐Junction Photodetectors , 2016, Advanced materials.

[27]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[28]  T. Hansen,et al.  Silicon UV-Photodiodes Using Natural Inversion Layers , 1978 .

[29]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[30]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[31]  Miao Zhu,et al.  High Detectivity Graphene-Silicon Heterojunction Photodetector. , 2016, Small.

[32]  Chao Xie,et al.  Light trapping and surface plasmon enhanced high-performance NIR photodetector , 2014, Scientific Reports.

[33]  R. Piner,et al.  Transfer of large-area graphene films for high-performance transparent conductive electrodes. , 2009, Nano letters.

[34]  S. Holland,et al.  Near-100% Quantum Efficiency of Delta Doped Large-Format UV-NIR Silicon Imagers , 2008, IEEE Transactions on Electron Devices.

[35]  Maurizio Casalino,et al.  Internal Photoemission Theory: Comments and Theoretical Limitations on the Performance of Near-Infrared Silicon Schottky Photodetectors , 2016, IEEE Journal of Quantum Electronics.

[36]  Raj Korde,et al.  Absolute silicon photodiodes for 160 nm to 254 nm photons , 1998 .

[37]  Hong-Sik Kim,et al.  Silver nanowires-templated metal oxide for broadband Schottky photodetector , 2016 .

[38]  Jing Kong,et al.  Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure , 2016 .

[39]  Zhiyong Fan,et al.  Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. , 2016, Chemical communications.

[40]  R. T. Rajendra Kumar,et al.  Facile construction of vertically aligned ZnO nanorod/PEDOT:PSS hybrid heterojunction-based ultraviolet light sensors: efficient performance and mechanism , 2016, Nanotechnology.

[41]  Zhihao Xu,et al.  Crackless transfer of large-area graphene films for superior-performance transparent electrodes , 2016 .

[42]  Todd J. Jones,et al.  Ultrastable and uniform EUV and UV detectors , 2000, SPIE Optics + Photonics.

[43]  Frank Scholze,et al.  Characterization of photodiodes as transfer detector standards in the 120 nm to 600 nm spectral range , 1998 .

[44]  Tetsuo Kan,et al.  Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars , 2016 .

[45]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[46]  M. Gemmi,et al.  Graphene-based large area dye-sensitized solar cell modules. , 2016, Nanoscale.

[47]  Meiyong Liao,et al.  A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures , 2013, Sensors.

[48]  Jishi Cui,et al.  Lowering the energy consumption in silicon photonic devices and systems [Invited] , 2015 .

[49]  Jie Shan,et al.  Seeing many-body effects in single- and few-layer graphene: observation of two-dimensional saddle-point excitons. , 2011, Physical review letters.

[50]  Bin Yu,et al.  Contacts between Two- and Three-Dimensional Materials: Ohmic, Schottky, and p-n Heterojunctions. , 2016, ACS nano.

[51]  F. H. Julien,et al.  GaN nanowire ultraviolet photodetector with a graphene transparent contact , 2013 .

[52]  S. Manna,et al.  Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions. , 2013, Optics express.

[53]  Xiaosheng Fang,et al.  Nanostructured Photodetectors: From Ultraviolet to Terahertz , 2016, Advanced materials.

[54]  Jiansheng Jie,et al.  High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors , 2013, IEEE Electron Device Letters.

[55]  A. A. Altukhov,et al.  Solar-blind UV flame detector based on natural diamond , 2008 .

[56]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[57]  Thomas H. Bointon,et al.  Novel Highly Conductive and Transparent Graphene-Based Conductors , 2012, Advanced materials.

[58]  Xinming Li,et al.  Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects , 2015, Advanced materials.

[59]  Wei Lu,et al.  High-responsivity graphene/InAs nanowire heterojunction near-infrared photodetectors with distinct photocurrent on/off ratios. , 2015, Small.

[60]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .