Sharp nonasymptotic bounds on the norm of random matrices with independent entries

We obtain nonasymptotic bounds on the spectral norm of random matrices with independent entries that improve significantly on earlier results. If $X$ is the $n\times n$ symmetric matrix with $X_{ij}\sim N(0,b_{ij}^2)$, we show that \[\mathbf{E}\Vert X\Vert \lesssim\max_i\sqrt{\sum_jb_{ij}^2}+\max _{ij}\vert b_{ij}\vert \sqrt{\log n}.\] This bound is optimal in the sense that a matching lower bound holds under mild assumptions, and the constants are sufficiently sharp that we can often capture the precise edge of the spectrum. Analogous results are obtained for rectangular matrices and for more general sub-Gaussian or heavy-tailed distributions of the entries, and we derive tail bounds in addition to bounds on the expected norm. The proofs are based on a combination of the moment method and geometric functional analysis techniques. As an application, we show that our bounds immediately yield the correct phase transition behavior of the spectral edge of random band matrices and of sparse Wigner matrices. We also recover a result of Seginer on the norm of Rademacher matrices.

[1]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[2]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[3]  Z. D. Bai,et al.  Necessary and Sufficient Conditions for Almost Sure Convergence of the Largest Eigenvalue of a Wigner Matrix , 1988 .

[4]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[5]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[6]  Yoav Seginer,et al.  The Expected Norm of Random Matrices , 2000, Combinatorics, Probability and Computing.

[7]  P. Massart,et al.  About the constants in Talagrand's concentration inequalities for empirical processes , 2000 .

[8]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[9]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[10]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[11]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[12]  R. Latala Some estimates of norms of random matrices , 2005 .

[13]  S. Boucheron,et al.  Moment inequalities for functions of independent random variables , 2005, math/0503651.

[14]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[15]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[16]  Ohad N. Feldheim,et al.  A Universality Result for the Smallest Eigenvalues of Certain Sample Covariance Matrices , 2008, 0812.1961.

[17]  Estimates for moments of random matrices with Gaussian elements , 2005, math-ph/0507060.

[18]  Ofer Zeitouni,et al.  An Introduction to Random Matrices: Introduction , 2009 .

[19]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[20]  Sasha Sodin,et al.  The spectral edge of some random band matrices , 2009, 0906.4047.

[21]  The Tracy–Widom Law for Some Sparse Random Matrices , 2009, 0903.4295.

[22]  M. Rudelson,et al.  Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.

[23]  Faperj Sums of random Hermitian matrices and an inequality by Rudelson , 2010 .

[24]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[25]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[26]  T. Tao Topics in Random Matrix Theory , 2012 .

[27]  S. Riemer,et al.  On the expectation of the norm of random matrices with non-identically distributed entries , 2012, 1203.3713.

[28]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[29]  Florent Benaych-Georges,et al.  Largest eigenvalues and eigenvectors of band or sparse random matrices , 2014 .

[30]  M. Talagrand Upper and Lower Bounds for Stochastic Processes , 2021, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.