Performance bounds for adaptive estimation

The performance of adaptive state estimators for linear dynamic systems is investigated. The adaptive state estimates are formed under the assumption that the unknown system parameter belongs to a finite set and is thus readily implementable. It is shown that, for the true parameter value in a prescribed region in the parameter space, the corresponding a posteriori probablity (or weighting coefficient in the adaptive estimator) converges exponentially in the vth mean (v > 1) and almost surely to unity. The analysis is based on the asymptotic per sample formula for the Kullback information function, which is derived in this paper. The significance of the analysis for applications is also examined.

[1]  S. Kullback,et al.  AN APPLICATION OF INFORMATION THEORY TO MULTIVARIATE ANALYSIS, II , 1952 .

[2]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[3]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[4]  K. Åström,et al.  Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1966 .

[5]  Stanley C. Fralick,et al.  Learning to recognize patterns without a teacher , 1967, IEEE Trans. Inf. Theory.

[6]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[7]  D. G. Lainiotis,et al.  Optimal adaptive filter realizations for sample stochastic processes with an unknown parameter , 1969 .

[8]  Demetrios G. Lainiotis,et al.  A class of upper bounds on probability of error for multihypotheses pattern recognition (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[9]  Demetrios G. Lainiotis On a general relationship between estimation, detection, and the Bhattacharyya coefficient (Corresp.) , 1969, IEEE Trans. Inf. Theory.

[10]  D. Lainiotis,et al.  Performance measure for adaptive Kalman estimators , 1970 .

[11]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[12]  C. Storey,et al.  Matrix methods in stability theory , 1972, The Mathematical Gazette.

[13]  L. Seidman Performance limitations and error calculations for parameter estimation , 1970 .

[14]  Louis A. Liporace,et al.  Variance of Bayes estimates , 1971, IEEE Trans. Inf. Theory.

[15]  B. Anderson,et al.  The choice of signal-process models in Kalman-Bucy filtering , 1971 .

[16]  S. Zacks The theory of statistical inference , 1972 .

[17]  D. Lainiotis,et al.  Probability of Error Bounds , 1971 .

[18]  J. Mendel,et al.  Bibliography on the linear-quadratic-Gaussian problem , 1971 .

[19]  D. Lainiotis Optimal adaptive estimation: Structure and parameter adaption , 1971 .

[20]  Robert M. Gray,et al.  On the asymptotic eigenvalue distribution of Toeplitz matrices , 1972, IEEE Trans. Inf. Theory.

[21]  D. Lainiotis,et al.  Monte Carlo study of the optimal non-linear estimator: linear systems with non-gaussian initial states † , 1972 .

[22]  D. Mayne A canonical model for identification of multivariable linear systems , 1972 .

[23]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[24]  S. Rice Efficient evaluation of integrals of analytic functions by the trapezoidal rule , 1973 .

[25]  D. Lainiotis,et al.  On joint detection, estimation and system identification: discrete data case† , 1973 .

[26]  Brian D. O. Anderson,et al.  Design of Kalman filters using signal-model output statistics , 1973 .

[27]  Demetrios G. Lainiotis,et al.  Partitioned estimation algorithms, I: Nonlinear estimation , 1974, Inf. Sci..

[28]  Brian D. O. Anderson,et al.  Recursive algorithm for spectral factorization , 1974 .

[29]  Peter E. Caines,et al.  Maximum likelihood estimation of parameters in multivariate Gaussian stochastic processes (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[30]  E. Tse Bounds for identification error and a quantitative measure of identifiability , 1974, CDC 1974.

[31]  K. Åström,et al.  Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model , 1974 .

[32]  Demetrios G. Lainiotis,et al.  Estimation: A brief survey , 1974, Inf. Sci..

[33]  J. Moore,et al.  Decision methods in dynamic system identification , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.