High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae.

[1]  Jay D. Keasling,et al.  A Cas9-based toolkit to program gene expression in Saccharomyces cerevisiae , 2016, Nucleic acids research.

[2]  Federico Cozzi,et al.  Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L. , 2016, Proceedings of the National Academy of Sciences.

[3]  I. Graham,et al.  A Cytochrome P450‐Mediated Intramolecular Carbon–Carbon Ring Closure in the Biosynthesis of Multidrug‐Resistance‐Reversing Lathyrane Diterpenoids , 2016, Chembiochem : a European journal of chemical biology.

[4]  A. Shahpiri,et al.  Metabolic engineering of Saccharomyces cerevisiae for linalool production , 2016, Biotechnology Letters.

[5]  J. Bohlmann,et al.  Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis , 2016, Angewandte Chemie.

[6]  A. Makris,et al.  Iterative carotenogenic screens identify combinations of yeast gene deletions that enhance sclareol production , 2015, Microbial Cell Factories.

[7]  T. Kang,et al.  Tigliane diterpenoids from the Euphorbiaceae and Thymelaeaceae families. , 2015, Chemical reviews.

[8]  Jules Beekwilder,et al.  Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae , 2014, Yeast.

[9]  J. Hohmann,et al.  Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008-2012). , 2014, Chemical reviews.

[10]  B. Hamberger,et al.  Cytochrome P450-mediated metabolic engineering: current progress and future challenges. , 2014, Current opinion in plant biology.

[11]  M. Maffei,et al.  Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase. , 2014, ACS synthetic biology.

[12]  J. Keasling,et al.  High-level semi-synthetic production of the potent antimalarial artemisinin , 2013, Nature.

[13]  P. Lakshmi,et al.  Overview of P-glycoprotein inhibitors: a rational outlook , 2012 .

[14]  T. Demura,et al.  Characterization of the casbene synthase homolog from Jatropha (Jatropha curcas L.) , 2012 .

[15]  Jay D. Keasling,et al.  Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin , 2012, Proceedings of the National Academy of Sciences.

[16]  A. Makris,et al.  Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids , 2011, Microbial cell factories.

[17]  J. Keasling,et al.  Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. , 2010, Phytochemistry.

[18]  B. Møller,et al.  Plant NADPH-cytochrome P450 oxidoreductases. , 2010, Phytochemistry.

[19]  Runhua Lu,et al.  Lathyrane diterpenes from Euphorbia lathyris as modulators of multidrug resistance and their crystal structures. , 2009, Bioorganic & medicinal chemistry.

[20]  S. Ogbourne,et al.  PEP005 (ingenol mebutate) gel, a novel agent for the treatment of actinic keratosis: Results of a randomized, double‐blind, vehicle‐controlled, multicentre, phase IIa study , 2009, The Australasian journal of dermatology.

[21]  P. Cox,et al.  Variability in Content of the Anti-AIDS Drug Candidate Prostratin in Samoan Populations of Homalanthus nutans , 2008, Journal of natural products.

[22]  P. Wender,et al.  Practical Synthesis of Prostratin, DPP, and Their Analogs, Adjuvant Leads Against Latent HIV , 2008, Science.

[23]  D. Uemura,et al.  Concise synthesis of a highly functionalized cyclopentane segment: toward the total synthesis of kansuinine A , 2007 .

[24]  Timothy S. Ham,et al.  Production of the antimalarial drug precursor artemisinic acid in engineered yeast , 2006, Nature.

[25]  K. O’Reilly,et al.  Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. , 2005, The Journal of urology.

[26]  M. Miyashita,et al.  Total synthesis of ingenol. , 2003, Journal of the American Chemical Society.

[27]  F. Halaweish,et al.  Toxic and Aversive Diterpenes of Euphorbia esula , 2002, Journal of Chemical Ecology.

[28]  P. Wender,et al.  Studies on tumor promoters. 9. A second-generation synthesis of phorbol , 1990 .

[29]  Vassilios Roussis,et al.  Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase. , 2015, Metabolic engineering.

[30]  Thomas R. Riley,et al.  A Randomized Double-blind Placebo-controlled Trial , 2004 .

[31]  R. D. Gietz,et al.  Screening for protein-protein interactions in the yeast two-hybrid system. , 2002, Methods in molecular biology.

[32]  G. Heijne,et al.  ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sites , 1999, Protein science : a publication of the Protein Society.

[33]  E. Hecker,et al.  Lathyrane type diterpenoid esters from Euphorbia characias , 1983 .