Gaussian beam reconstruction of seismic data

We have developed a new Gaussian beam reconstruction algorithm using time-domain Gaussian beam (TGB) method to decompose seismic data. The TGB is characterized by a particular arrival time, location, amplitude, orientation, curvature, and extent. TGB decomposition and reconstruction of seismic data are implemented by the plane-wave decomposition (PWD) theory. First, we evaluate the construction principle of TGB, and then we develop the PWD filter to decompose seismic data into local plane waves by estimated dip fields and curvature fields of the seismic records. Next, the local plane waves in terms of TGBs are used to reconstruct seismic data through iteratively minimizing the residual error. Afterward, Gaussian beam depth migration is performed on the reconstructed data. Finally, we analyze the reconstruction results under the circumstance of seismic data with randomly missing traces. Numerical tests indicate that for data with missing traces, the Gaussian beam method obtains better reconstruction performance than the traditional projection onto convex sets method with the same number of iterations. The combination of Gaussian beam seismic data reconstruction and migration extends the research field of Gaussian beam migration, which has an important theoretical and practical significance.

[1]  Min Bai,et al.  Five-dimensional seismic data reconstruction using the optimally damped rank-reduction method , 2019, Geophysical Journal International.

[2]  Shaohuan Zu,et al.  The Interpolation of Sparse Geophysical Data , 2018, Surveys in Geophysics.

[3]  Yanfei Wang,et al.  Sparse decomposition of seismic data and migration using Gaussian beams with nonzero initial curvature , 2018 .

[4]  Yatong Zhou,et al.  Simultaneous deblending and interpolation using structure-oriented filters , 2018 .

[5]  Hui Zhou,et al.  Adaptive stabilization for Q-compensated reverse time migration , 2018 .

[6]  Datong Zhou,et al.  Signal enhancement based on complex curvelet transform and complementary ensemble empirical mode decomposition , 2017 .

[7]  Yangkang Chen,et al.  Hybrid rank-sparsity constraint model for simultaneous reconstruction and denoising of 3D seismic data , 2017 .

[8]  Hui Li,et al.  Q-compensated beam migration with multiscale Gabor transform , 2017 .

[9]  Yangkang Chen,et al.  Shot-domain deblending using least-squares inversion , 2017 .

[10]  S. Mostafa Mousavi,et al.  Automatic noise-removal/signal-removal based on general cross-validation thresholding in synchrosqueezed domain and its application on earthquake data , 2017 .

[11]  Yatong Zhou A POCS method for iterative deblending constrained by a blending mask , 2017 .

[12]  Weilin Huang,et al.  Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method , 2016 .

[13]  Jianguo Sun,et al.  Born modeling for heterogeneous media using the Gaussian beam summation based Green's function , 2016 .

[14]  S. Mostafa Mousavi,et al.  Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding , 2016 .

[15]  Yangkang Chen,et al.  Dip-separated structural filtering using seislet transform and adaptive empirical mode decomposition based dip filter , 2016 .

[16]  S. Mostafa Mousavi,et al.  Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform , 2016 .

[17]  Y. Chen,et al.  Q -compensated migration by Gaussian beam summation method , 2016 .

[18]  Yangkang Chen,et al.  Seismic imaging of incomplete data and simultaneous-source data using least-squares reverse time migration with shaping regularization , 2016 .

[19]  Yangkang Chen,et al.  Dealiased Seismic Data Interpolation Using Seislet Transform With Low-Frequency Constraint , 2015, IEEE Geoscience and Remote Sensing Letters.

[20]  Min Bai,et al.  Attenuation compensation in multicomponent Gaussian beam prestack depth migration , 2015, Applied Geophysics.

[21]  J. Wu,et al.  Attenuation Compensation in Viscoacoustic Gaussian Beam Reverse Time Migration , 2015 .

[22]  Yangkang Chen,et al.  Random noise attenuation using local signal-and-noise orthogonalization , 2015 .

[23]  Andrew Ratcliffe,et al.  Full Waveform Inversion applied to the Chevron/SEG 2014 blind test dataset , 2015 .

[24]  Jun Lu,et al.  Gaussian beam prestack depth migration of converted wave in TI media , 2014 .

[25]  Yu Geng,et al.  Dreamlet-based interpolation using POCS method , 2014 .

[26]  Jianwei Ma,et al.  Three-dimensional irregular seismic data reconstruction via low-rank matrix completion , 2013 .

[27]  Peng Liu,et al.  Data regularization using Gaussian beams decomposition and sparse norms , 2013 .

[28]  Liu Pen Seismic data decomposition using sparse Gaussian beams , 2013 .

[29]  Changchun Yang,et al.  ON TIKHONOV REGULARIZATION AND COMPRESSIVE SENSING FOR SEISMIC SIGNAL PROCESSING , 2012 .

[30]  Jingjie Cao,et al.  Recovery of seismic wavefields based on compressive sensing by an l1-norm constrained trust region method and the piecewise random subsampling , 2011, Geophysical Journal International.

[31]  Mauricio D. Sacchi,et al.  Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .

[32]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[33]  Sergey Fomel,et al.  Time-domain Seismic Imaging Using Beams , 2009 .

[34]  F. Herrmann,et al.  Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .

[35]  I. Daubechies,et al.  Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints , 2007, 0706.4297.

[36]  Dave Nichols,et al.  Choosing a Good Set of Beams For Rapid Prestack Depth Migration , 2008 .

[37]  S. Fomel,et al.  Shaping regularization in geophysical-estimation problems , 2007 .

[38]  R. Abma,et al.  3D interpolation of irregular data with a POCS algorithm , 2006 .

[39]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[40]  Sergey Fomel,et al.  Velocity continuation and the anatomy of residual prestack time migration , 2003 .

[41]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[42]  Necati Gulunay,et al.  Seismic trace interpolation in the Fourier transform domain , 2003 .

[43]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[44]  S. M. Doherty,et al.  Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data , 2000 .

[45]  Sean Crawley Seismic trace interpolation with nonstationary prediction-error filters , 2000 .

[46]  Milton J. Porsani,et al.  Seismic trace interpolation using half-step prediction filters , 1999 .

[47]  Jon F. Claerbout,et al.  Interpolation with smoothly nonstationary prediction-error filters , 1999 .

[48]  S. Spitz Seismic trace interpolation in the F-X domain , 1991 .

[49]  N. R. Hill,et al.  Gaussian beam migration , 1990 .

[50]  M. Weber,et al.  Computation of body-wave seismograms in absorbing 2-D media using the Gaussian beam method: comparison with exact methods , 1988 .

[51]  Benjamin S. White,et al.  Some remarks on the Gaussian beam summation method , 1987 .

[52]  Keiiti Aki,et al.  The two‐dimensional Gaussian beam synthetic method: Testing and application , 1984 .