Multicategory classification using an Extreme Learning Machine for microarray gene expression cancer diagnosis

This paper deals with the advanced and developed methodology know for cancer multi classification using an Extreme Learning Machine (ELM) for microarray gene expression cancer diagnosis, this used for directing multicategory classification problems in the cancer diagnosis area. ELM avoids problems like local minima; improper learning rate and over fitting commonly faced by iterative learning methods and completes the training very fast. We have evaluated the multicategory0 classification performance of ELM on benchmark microarray data sets for cancer diagnosis, namely, the Lymphoma data set. The results indicate that ELM produces comparable or better classification accuracies with reduced training time and implementation complexity compared to artificial neural networks methods like conventional back-propagation ANN, Linder's SANN, and Support Vector Machine.

[1]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[2]  R. Spang,et al.  Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  T. Poggio,et al.  Multiclass cancer diagnosis using tumor gene expression signatures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[5]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[6]  M. Ringnér,et al.  Analyzing array data using supervised methods. , 2002, Pharmacogenomics.

[7]  D. Serre Matrices: Theory and Applications , 2002 .

[8]  Annette M. Molinaro,et al.  Loss-based estimation with cross-validation: applications to microarray data analysis , 2003, SKDD.

[9]  Guang-Bin Huang,et al.  Extreme learning machine: a new learning scheme of feedforward neural networks , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[10]  Chee Kheong Siew,et al.  Extreme learning machine: RBF network case , 2004, ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004..

[11]  Siegfried J. Pöppl,et al.  The 'subsequent artificial neural network' (SANN) approach might bring more classificatory power to ANN-based DNA microarray analyses , 2004, Bioinform..

[12]  Peteris Prusis,et al.  Unbiased descriptor and parameter selection confirms the potential of proteochemometric modelling , 2005, BMC Bioinformatics.

[13]  C. Siew,et al.  Extreme Learning Machine with Randomly Assigned RBF Kernels , 2005 .

[14]  Narasimhan Sundararajan,et al.  Fully complex extreme learning machine , 2005, Neurocomputing.

[15]  Chee Kheong Siew,et al.  Can threshold networks be trained directly? , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Chee Kheong Siew,et al.  Universal Approximation using Incremental Constructive Feedforward Networks with Random Hidden Nodes , 2006, IEEE Transactions on Neural Networks.

[17]  S. Dudoit,et al.  Prognosis of stage II colon cancer by non-neoplastic mucosa gene expression profiling , 2007, Oncogene.

[18]  P. Saratchandran,et al.  Multicategory Classification Using An Extreme Learning Machine for Microarray Gene Expression Cancer Diagnosis , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.